文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions.

作者信息

Irede Egwonor Loveth, Awoyemi Raymond Femi, Owolabi Babatunde, Aworinde Omowunmi Rebecca, Kajola Rofiat Odunayo, Hazeez Ajibola, Raji Ayuba Adawale, Ganiyu Latifat Oluwatobi, Onukwuli Chimezie O, Onivefu Asishana Paul, Ifijen Ikhazuagbe Hilary

机构信息

Department of Chemistry, Clemson University Clemson South Carolina USA.

Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 USA.

出版信息

RSC Adv. 2024 Jul 3;14(29):20992-21034. doi: 10.1039/d4ra02452d. eCollection 2024 Jun 27.


DOI:10.1039/d4ra02452d
PMID:38962092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11220610/
Abstract

This paper presents a comprehensive review of recent advancements in utilizing zinc oxide nanoparticles (ZnO NPs) to enhance antimicrobial and UV protective properties in healthcare solutions. It delves into the synthesis techniques of ZnO NPs and elucidates their antimicrobial efficacy, exploring the underlying mechanisms governing their action against a spectrum of pathogens. Factors impacting the antimicrobial performance of ZnO NPs, including size, surface characteristics, and environmental variables, are extensively analyzed. Moreover, recent studies showcasing the effectiveness of ZnO NPs against diverse pathogens are critically examined, underscoring their potential utility in combatting microbial infections. The study further investigates the UV protective capabilities of ZnO NPs, elucidating the mechanisms by which they offer UV protection and reviewing recent innovations in leveraging them for UV-blocking applications in healthcare. It also dissects the factors influencing the UV shielding performance of ZnO NPs, such as particle size, dispersion quality, and surface coatings. Additionally, the paper addresses challenges associated with integrating ZnO NPs into healthcare products and presents future perspectives for overcoming these hurdles. It emphasizes the imperative for continued research efforts and collaborative initiatives to fully harness the potential of ZnO NPs in developing advanced healthcare solutions with augmented antimicrobial and UV protective attributes. By advancing our understanding and leveraging innovative approaches, ZnO NPs hold promise for addressing pressing healthcare needs and enhancing patient care outcomes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c7a097b3335c/d4ra02452d-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/d1004da0283b/d4ra02452d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/cad6f0b46ef8/d4ra02452d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/1b75de263673/d4ra02452d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/802c5e595fff/d4ra02452d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/aa864f99d2ab/d4ra02452d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/fe505c7f1f72/d4ra02452d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/7b4333448796/d4ra02452d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/0881d2531dff/d4ra02452d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/e41f8d32d681/d4ra02452d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/1d8e65cf619d/d4ra02452d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c93e2f062371/d4ra02452d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/03b70cae0a4b/d4ra02452d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c391cd8ff71c/d4ra02452d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/cde32381ea03/d4ra02452d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/a200c0b9512f/d4ra02452d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/0d24d41679bd/d4ra02452d-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/b94f20171b9f/d4ra02452d-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/fe2d0b4833d8/d4ra02452d-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/58a36333a0ba/d4ra02452d-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c623baec71b0/d4ra02452d-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/06d1ab438e78/d4ra02452d-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c7a097b3335c/d4ra02452d-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/d1004da0283b/d4ra02452d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/cad6f0b46ef8/d4ra02452d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/1b75de263673/d4ra02452d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/802c5e595fff/d4ra02452d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/aa864f99d2ab/d4ra02452d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/fe505c7f1f72/d4ra02452d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/7b4333448796/d4ra02452d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/0881d2531dff/d4ra02452d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/e41f8d32d681/d4ra02452d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/1d8e65cf619d/d4ra02452d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c93e2f062371/d4ra02452d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/03b70cae0a4b/d4ra02452d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c391cd8ff71c/d4ra02452d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/cde32381ea03/d4ra02452d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/a200c0b9512f/d4ra02452d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/0d24d41679bd/d4ra02452d-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/b94f20171b9f/d4ra02452d-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/fe2d0b4833d8/d4ra02452d-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/58a36333a0ba/d4ra02452d-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c623baec71b0/d4ra02452d-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/06d1ab438e78/d4ra02452d-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bbf/11220610/c7a097b3335c/d4ra02452d-f22.jpg

相似文献

[1]
Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions.

RSC Adv. 2024-7-3

[2]
In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications.

Microb Pathog. 2018-9-18

[3]
Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review.

J Anim Sci Biotechnol. 2019-7-9

[4]
Fabrication of Ultra-Pure Anisotropic Zinc Oxide Nanoparticles via Simple and Cost-Effective Route: Implications for UTI and EAC Medications.

Biol Trace Elem Res. 2020-7

[5]
Optimizing Antimicrobial Efficacy: Investigating the Impact of Zinc Oxide Nanoparticle Shape and Size.

Nanomaterials (Basel). 2024-4-6

[6]
Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview.

Int J Nanomedicine. 2019-12-2

[7]
Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles.

J Appl Microbiol. 2022-1

[8]
Preparation of Zinc Oxide Nanoparticles Assisted by Okra Mucilage and Evaluation of its Biological Activities.

Curr Drug Discov Technol. 2023

[9]
Continuous flow scale-up of biofunctionalized defective ZnO quantum dots: A safer inorganic ingredient for skin UV protection.

Acta Biomater. 2022-7-15

[10]
Biosynthesis of zinc oxide nanoparticles using stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines.

Int J Nanomedicine. 2018-12-20

引用本文的文献

[1]
Nanotechnology-Enhanced Sunscreens: Balancing Efficacy, Safety, and Environmental Impact.

Pharmaceutics. 2025-8-21

[2]
Mechanical performance and aging resistance analysis of zinc oxide-reinforced polyurethane composites.

RSC Adv. 2025-8-11

[3]
Biogenic Zinc nanoparticles: green approach to synthesis, characterization, and antimicrobial applications.

Microb Cell Fact. 2025-7-18

[4]
Functional Properties and Safety Considerations of Zinc Oxide Nanoparticles Under Varying Conditions.

Nanomaterials (Basel). 2025-6-10

[5]
Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles.

Nanomaterials (Basel). 2025-6-3

[6]
Residual Biomass-Based Hydrogel as a Novel UV-Protective and Antimicrobial Wound-Healing Dressing for Biomedical Use.

Int J Mol Sci. 2025-5-8

[7]
Protein-based nanoparticles for antimicrobial and cancer therapy: implications for public health.

RSC Adv. 2025-5-8

[8]
Green biosynthesis of titanium dioxide nanoparticles incorporated gellan gum hydrogel for biomedical application as wound dressing.

Front Chem. 2025-4-17

[9]
Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: a public health perspective.

RSC Adv. 2025-4-7

[10]
Platinum nanoparticles in cancer therapy: chemotherapeutic enhancement and ROS generation.

Med Oncol. 2025-1-9

本文引用的文献

[1]
Effects of Zn-ZnO Core-Shell Nanoparticles on Antimicrobial Mechanisms and Immune Cell Activation.

ACS Appl Nano Mater. 2023-9-11

[2]
Structure, Conductivity, and Sensor Properties of Nanosized ZnO-InO Composites: Influence of Synthesis Method.

Micromachines (Basel). 2023-8-29

[3]
Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants.

Front Microbiol. 2023-9-5

[4]
Room-Temperature Ferromagnetism in Mn-Doped ZnO Nanoparticles Synthesized by the Sol-Gel Method.

ACS Omega. 2023-7-26

[5]
Biosorption of Using ZnO-Trimethyl Chitosan Nanocomposite Hydrogel Formed by the Green Synthesis Route.

Gels. 2023-7-17

[6]
Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies.

Toxics. 2023-5-10

[7]
Improving ultraviolet protection properties of cotton textiles using Zinc oxide (ZnO) nanomaterials: an approach for controlling occupational and environmental exposures.

Int J Environ Health Res. 2024-4

[8]
In Situ Pressure Controlled Growth of ZnO Nanoparticles: Tailoring Sizes, Defects, and Optical Properties.

Inorg Chem. 2023-5-22

[9]
Synergistic Antibacterial Proficiency of Green Bioformulated Zinc Oxide Nanoparticles with Potential Fosfomycin Synergism against Nosocomial Bacterial Pathogens.

Microorganisms. 2023-3-2

[10]
Antibacterial Activity of Solvothermal Obtained ZnO Nanoparticles with Different Morphology and Photocatalytic Activity against a Dye Mixture: Methylene Blue, Rhodamine B and Methyl Orange.

Int J Mol Sci. 2023-3-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索