Suppr超能文献

一种使用生存统计的机器学习方法预测肾移植受者移植物存活率:一项多中心队列研究。

A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study.

机构信息

Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju, Korea.

Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Korea.

出版信息

Sci Rep. 2017 Aug 21;7(1):8904. doi: 10.1038/s41598-017-08008-8.

Abstract

Accurate prediction of graft survival after kidney transplant is limited by the complexity and heterogeneity of risk factors influencing allograft survival. In this study, we applied machine learning methods, in combination with survival statistics, to build new prediction models of graft survival that included immunological factors, as well as known recipient and donor variables. Graft survival was estimated from a retrospective analysis of the data from a multicenter cohort of 3,117 kidney transplant recipients. We evaluated the predictive power of ensemble learning algorithms (survival decision tree, bagging, random forest, and ridge and lasso) and compared outcomes to those of conventional models (decision tree and Cox regression). Using a conventional decision tree model, the 3-month serum creatinine level post-transplant (cut-off, 1.65 mg/dl) predicted a graft failure rate of 77.8% (index of concordance, 0.71). Using a survival decision tree model increased the index of concordance to 0.80, with the episode of acute rejection during the first year post-transplant being associated with a 4.27-fold increase in the risk of graft failure. Our study revealed that early acute rejection in the first year is associated with a substantially increased risk of graft failure. Machine learning methods may provide versatile and feasible tools for forecasting graft survival.

摘要

准确预测肾移植后移植物的存活率受到影响移植物存活的复杂和异质性因素的限制。在这项研究中,我们应用机器学习方法,结合生存统计,建立了新的移植物存活预测模型,其中包括免疫因素以及已知的受者和供者变量。通过对来自 3117 例肾移植受者多中心队列的回顾性数据分析,我们评估了集成学习算法(生存决策树、套袋法、随机森林和岭回归与lasso 回归)的预测能力,并将结果与传统模型(决策树和 Cox 回归)进行了比较。使用传统的决策树模型,移植后 3 个月的血清肌酐水平(截断值为 1.65mg/dl)预测移植物失效率为 77.8%(一致性指数为 0.71)。使用生存决策树模型,一致性指数提高到 0.80,移植后第一年的急性排斥反应与移植物失功风险增加 4.27 倍有关。我们的研究表明,移植后第一年的早期急性排斥反应与移植物失功风险显著增加有关。机器学习方法可为预测移植物存活提供灵活可行的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc8/5567098/06fdf4a370ea/41598_2017_8008_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验