Suppr超能文献

使用机器学习技术开发风险预测模型以预测肾移植后的移植物失败:一项回顾性队列研究方案

Using machine learning techniques to develop risk prediction models to predict graft failure following kidney transplantation: protocol for a retrospective cohort study.

作者信息

Senanayake Sameera, Barnett Adrian, Graves Nicholas, Healy Helen, Baboolal Keshwar, Kularatna Sanjeewa

机构信息

Australian Center for Health Service Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.

Royal Brisbane Hospital for Women, Brisbane, QLD, 4001, Australia.

出版信息

F1000Res. 2019 Oct 29;8:1810. doi: 10.12688/f1000research.20661.2. eCollection 2019.

Abstract

A mechanism to predict graft failure before the actual kidney transplantation occurs is crucial to clinical management of chronic kidney disease patients.  Several kidney graft outcome prediction models, developed using machine learning methods, are available in the literature.  However, most of those models used small datasets and none of the machine learning-based prediction models available in the medical literature modelled time-to-event (survival) information, but instead used the binary outcome of failure or not. The objective of this study is to develop two separate machine learning-based predictive models to predict graft failure following live and deceased donor kidney transplant, using time-to-event data in a large national dataset from Australia.   The dataset provided by the Australia and New Zealand Dialysis and Transplant Registry will be used for the analysis. This retrospective dataset contains the cohort of patients who underwent a kidney transplant in Australia from January 1 , 2007, to December 31 , 2017. This included 3,758 live donor transplants and 7,365 deceased donor transplants. Three machine learning methods (survival tree, random survival forest and survival support vector machine) and one traditional regression method, Cox proportional regression, will be used to develop the two predictive models (for live donor and deceased donor transplants). The best predictive model will be selected based on the model's performance. This protocol describes the development of two separate machine learning-based predictive models to predict graft failure following live and deceased donor kidney transplant, using a large national dataset from Australia. Furthermore, these two models will be the most comprehensive kidney graft failure predictive models that have used survival data to model using machine learning techniques. Thus, these models are expected to provide valuable insight into the complex interactions between graft failure and donor and recipient characteristics.

摘要

在实际肾脏移植发生之前预测移植失败的机制对于慢性肾病患者的临床管理至关重要。文献中已有几种使用机器学习方法开发的肾脏移植结果预测模型。然而,这些模型大多使用的是小数据集,并且医学文献中现有的基于机器学习的预测模型均未对事件发生时间(生存)信息进行建模,而是使用了失败或未失败的二元结果。本研究的目的是利用澳大利亚一个大型全国性数据集中的事件发生时间数据,开发两个独立的基于机器学习的预测模型,以预测活体和尸体供肾移植后的移植失败情况。将使用澳大利亚和新西兰透析与移植登记处提供的数据集进行分析。这个回顾性数据集包含了2007年1月1日至2017年12月31日在澳大利亚接受肾脏移植的患者队列。其中包括3758例活体供肾移植和7365例尸体供肾移植。将使用三种机器学习方法(生存树、随机生存森林和生存支持向量机)以及一种传统回归方法——Cox比例回归,来开发这两个预测模型(用于活体供肾和尸体供肾移植)。将根据模型的性能选择最佳预测模型。本方案描述了利用澳大利亚一个大型全国性数据集,开发两个独立的基于机器学习的预测模型,以预测活体和尸体供肾移植后的移植失败情况。此外,这两个模型将是使用生存数据通过机器学习技术进行建模的最全面的肾脏移植失败预测模型。因此,预计这些模型将为移植失败与供体和受体特征之间的复杂相互作用提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc42/7199427/7ac2f9bf6439/f1000research-8-25046-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验