Suppr超能文献

通用机器学习模型、综述以及厚朴酚在产肠毒素诱导的氧化应激中活性的实验-理论研究

General Machine Learning Model, Review, and Experimental-Theoretic Study of Magnolol Activity in Enterotoxigenic Induced Oxidative Stress.

作者信息

Deng Yanli, Liu Yong, Tang Shaoxun, Zhou Chuanshe, Han Xuefeng, Xiao Wenjun, Pastur-Romay Lucas Anton, Vazquez-Naya Jose Manuel, Loureiro Javier Pereira, Munteanu Cristian R, Tan Zhiliang

机构信息

National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128. China.

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125. China.

出版信息

Curr Top Med Chem. 2017;17(26):2977-2988. doi: 10.2174/1568026617666170821130315.

Abstract

This study evaluated the antioxidative effects of magnolol based on the mouse model induced by Enterotoxigenic Escherichia coli (E. coli, ETEC). All experimental mice were equally treated with ETEC suspensions (3.45×109 CFU/ml) after oral administration of magnolol for 7 days at the dose of 0, 100, 300 and 500 mg/kg Body Weight (BW), respectively. The oxidative metabolites and antioxidases for each sample (organism of mouse) were determined: Malondialdehyde (MDA), Nitric Oxide (NO), Glutathione (GSH), Myeloperoxidase (MPO), Catalase (CAT), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx). In addition, we also determined the corresponding mRNA expressions of CAT, SOD and GPx as well as the Total Antioxidant Capacity (T-AOC). The experiment was completed with a theoretical study that predicts a series of 79 ChEMBL activities of magnolol with 47 proteins in 18 organisms using a Quantitative Structure- Activity Relationship (QSAR) classifier based on the Moving Averages (MAs) of Rcpi descriptors in three types of experimental conditions (biological activity with specific units, protein target and organisms). Six Machine Learning methods from Weka software were tested and the best QSAR classification model was provided by Random Forest with True Positive Rate (TPR) of 0.701 and Area under Receiver Operating Characteristic (AUROC) of 0.790 (test subset, 10-fold crossvalidation). The model is predicting if the new ChEMBL activities are greater or lower than the average values for the magnolol targets in different organisms.

摘要

本研究基于产肠毒素大肠杆菌(ETEC)诱导的小鼠模型评估了厚朴酚的抗氧化作用。在分别以0、100、300和500mg/kg体重(BW)的剂量口服厚朴酚7天后,所有实验小鼠均接受ETEC悬液(3.45×109 CFU/ml)处理。测定了每个样本(小鼠机体)的氧化代谢产物和抗氧化酶:丙二醛(MDA)、一氧化氮(NO)、谷胱甘肽(GSH)、髓过氧化物酶(MPO)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPx)。此外,我们还测定了CAT、SOD和GPx的相应mRNA表达以及总抗氧化能力(T-AOC)。该实验还完成了一项理论研究,该研究使用基于三种实验条件(具有特定单位的生物活性、蛋白质靶点和生物体)下Rcpi描述符的移动平均值(MA)的定量构效关系(QSAR)分类器,预测了厚朴酚与18种生物体中47种蛋白质的一系列79种ChEMBL活性。测试了来自Weka软件的六种机器学习方法,随机森林提供了最佳的QSAR分类模型,真阳性率(TPR)为0.701,受试者操作特征曲线下面积(AUROC)为0.790(测试子集,10倍交叉验证)。该模型用于预测新的ChEMBL活性是否高于或低于厚朴酚在不同生物体中的靶点平均值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验