IEEE J Biomed Health Inform. 2018 Jul;22(4):1238-1249. doi: 10.1109/JBHI.2017.2740500. Epub 2017 Aug 17.
The advancement of research in a specific area of clinical diagnosis crucially depends on the availability and quality of the radiology and other test related databases accompanied by ground truth and additional necessary medical findings. This paper describes the creation of the Department of Biotechnology-Tripura University-Jadavpur University (DBT-TU-JU) breast thermogram database. The objective of creating the DBT-TU-JU database is to provide a breast thermogram database that is annotated with the ground-truth images of the suspicious regions. Along with the result of breast thermography, the database comprises of the results of other breast imaging methodologies. A standard breast thermogram acquisition protocol suite comprising of several critical factors has been designed for the collection of breast thermograms. Currently, the DBT-TU-JU database contains 1100 breast thermograms of 100 subjects. Due to the necessity of evaluating any breast abnormality detection system, this study emphasizes the generation of the ground-truth images of the hotspot areas, whose presence in a breast thermogram signifies the presence of breast abnormality. With the generated ground-truth images, we compared the results of six state-of-the-art image segmentation methods using five supervised evaluation metrics to identify the proficient segmentation methods for hotspot extraction. Based on the evaluation results, the fractional-order Darwinian particle swarm optimization, region growing, mean shift, and fuzzy c-means clustering are found to be more efficient in comparison to k-means clustering and threshold-based segmentation methods.
特定临床诊断领域的研究进展在很大程度上取决于放射学和其他相关测试数据库的可用性和质量,这些数据库还需附有真实数据和其他必要的医学发现。本文描述了生物技术部门-特里普拉大学-贾达普布尔大学(DBT-TU-JU)乳腺热图数据库的创建。创建 DBT-TU-JU 数据库的目的是提供一个带有可疑区域真实数据的乳腺热图数据库。除了乳腺热成像的结果外,该数据库还包含其他乳腺成像方法的结果。已经设计了一套标准的乳腺热图采集协议套件,其中包含几个关键因素,用于采集乳腺热图。目前,DBT-TU-JU 数据库包含 100 名受试者的 1100 张乳腺热图。由于需要评估任何乳腺异常检测系统,因此本研究强调生成热点区域的真实数据,乳腺热图中存在热点区域表示存在乳腺异常。有了生成的真实数据,我们使用五种监督评估指标比较了六种最先进的图像分割方法的结果,以确定用于热点提取的熟练分割方法。根据评估结果,与 k-均值聚类和基于阈值的分割方法相比,分数阶达尔文粒子群优化、区域生长、均值漂移和模糊 C 均值聚类在效率上更高。