Suppr超能文献

基于 DLPE 的水平集方法的乳腺热图可疑区域分割。

Suspicious-Region Segmentation From Breast Thermogram Using DLPE-Based Level Set Method.

出版信息

IEEE Trans Med Imaging. 2019 Feb;38(2):572-584. doi: 10.1109/TMI.2018.2867620. Epub 2018 Aug 29.

Abstract

Segmentation of suspicious regions (SRs) of a thermal breast image (TBI) is a very significant and challenging problem for the identification of breast cancer. Therefore, in this work, we have proposed an active contour model for the segmentation of the SRs in TBI. The proposed segmentation method combines three significant steps. First, a novel method, called smaller-peaks corresponding to the high-intensity-pixels and the centroid-knowledge of SRs (SCH-CS), is proposed to approximately locate the SRs, whose contours are later used as the initial evolving curves of the level set method (LSM). Second, a new energy functional, called different local priorities embedded (DLPE), is proposed regarding the level set function. DLPE is then minimized using the interleaved level set evolution to segment the potential SRs in TBI more accurately. Finally, a new stopping criterion is incorporated into the proposed LSM. The proposed LSM not only increases the segmentation speed but also ameliorates the segmentation accuracy. The performance of our SR segmentation method was evaluated on two TBI databases, namely, DMR-IR and DBT-TU-JU, and the average segmentation accuracies obtained on these databases are 72.18% and 71.26% respectively, which are better than the other state-of-the-art methods. Beside this, a novel framework to analyze TBIs is proposed for differentiating abnormal and normal breasts on the basis of the segmented SRs. We have also shown experimentally that investigating only the SRs instead of the whole breast is more effective in differentiating abnormal and normal breasts.

摘要

对热乳腺图像(TBI)中的可疑区域(SR)进行分割是识别乳腺癌的一个非常重要且具有挑战性的问题。因此,在这项工作中,我们提出了一种用于 TBI 中 SR 分割的主动轮廓模型。所提出的分割方法结合了三个重要步骤。首先,提出了一种称为与高亮度像素对应的较小峰和 SR 的质心知识(SCH-CS)的新方法,用于近似定位 SR,其轮廓后来用作水平集方法(LSM)的初始演化曲线。其次,针对水平集函数提出了一个新的能量泛函,称为不同局部优先级嵌入(DLPE)。然后使用交错水平集演化最小化 DLPE,以更准确地分割 TBI 中的潜在 SR。最后,将新的停止准则纳入到所提出的 LSM 中。所提出的 LSM 不仅提高了分割速度,而且提高了分割精度。在两个 TBI 数据库,即 DMR-IR 和 DBT-TU-JU 上评估了我们的 SR 分割方法的性能,在这两个数据库上获得的平均分割精度分别为 72.18%和 71.26%,优于其他最先进的方法。除此之外,还提出了一种分析 TBI 的新框架,以便基于分割的 SR 来区分异常和正常乳房。我们还通过实验证明,仅研究 SR 而不是整个乳房在区分异常和正常乳房方面更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验