Suppr超能文献

使用二维培养系统对原代大脑皮层细胞进行实时成像。

Live Imaging of Primary Cerebral Cortex Cells Using a 2D Culture System.

作者信息

Landeira Bruna Soares, Araújo Jéssica Alves de Medeiros, Schroeder Timm, Müller Ulrich, Costa Marcos R

机构信息

Brain Institute, Federal University of Rio Grande do Norte.

Department of Biosystems Science and Engineering, ETH Zurich.

出版信息

J Vis Exp. 2017 Aug 9(126):56063. doi: 10.3791/56063.

Abstract

During cerebral cortex development, progenitor cells undergo several rounds of symmetric and asymmetric cell divisions to generate new progenitors or postmitotic neurons. Later, some progenitors switch to a gliogenic fate, adding to the astrocyte and oligodendrocyte populations. Using time-lapse video-microscopy of primary cerebral cortex cell cultures, it is possible to study the cellular and molecular mechanisms controlling the mode of cell division and cell cycle parameters of progenitor cells. Similarly, the fate of postmitotic cells can be examined using cell-specific fluorescent reporter proteins or post-imaging immunocytochemistry. More importantly, all these features can be analyzed at the single-cell level, allowing the identification of progenitors committed to the generation of specific cell types. Manipulation of gene expression can also be performed using viral-mediated transfection, allowing the study of cell-autonomous and non-cell-autonomous phenomena. Finally, the use of fusion fluorescent proteins allows the study of symmetric and asymmetric distribution of selected proteins during division and the correlation with daughter cells fate. Here, we describe the time-lapse video-microscopy method to image primary cerebral cortex murine cells for up to several days and analyze the mode of cell division, cell cycle length and fate of newly generated cells. We also describe a simple method to transfect progenitor cells, which can be applied to manipulate genes of interest or simply label cells with reporter proteins.

摘要

在大脑皮质发育过程中,祖细胞经历多轮对称和不对称细胞分裂,以产生新的祖细胞或有丝分裂后神经元。之后,一些祖细胞转变为生成胶质细胞的命运,增加了星形胶质细胞和少突胶质细胞群体。利用原代大脑皮质细胞培养的延时视频显微镜技术,可以研究控制祖细胞分裂模式和细胞周期参数的细胞及分子机制。同样,使用细胞特异性荧光报告蛋白或成像后免疫细胞化学方法,可以检测有丝分裂后细胞的命运。更重要的是,所有这些特征都可以在单细胞水平上进行分析,从而鉴定出致力于生成特定细胞类型的祖细胞。利用病毒介导的转染也可以进行基因表达的操作,从而研究细胞自主和非细胞自主现象。最后,融合荧光蛋白的使用使得我们能够研究分裂过程中选定蛋白质的对称和不对称分布以及与子细胞命运的相关性。在这里,我们描述了一种延时视频显微镜方法,用于对原代大脑皮质小鼠细胞进行长达数天的成像,并分析细胞分裂模式、细胞周期长度和新生成细胞的命运。我们还描述了一种转染祖细胞的简单方法,该方法可用于操纵感兴趣的基因或简单地用报告蛋白标记细胞。

相似文献

1
Live Imaging of Primary Cerebral Cortex Cells Using a 2D Culture System.
J Vis Exp. 2017 Aug 9(126):56063. doi: 10.3791/56063.
2
Division modes and physical asymmetry in cerebral cortex progenitors.
Curr Opin Neurobiol. 2017 Feb;42:75-83. doi: 10.1016/j.conb.2016.11.009. Epub 2016 Dec 12.
3
Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex.
Development. 2008 Jan;135(1):11-22. doi: 10.1242/dev.009951. Epub 2007 Nov 21.
4
Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors.
Dev Dyn. 2015 Jun;244(6):748-58. doi: 10.1002/dvdy.24276. Epub 2015 Apr 23.
5
Cell Division Modes and Cleavage Planes of Neural Progenitors during Mammalian Cortical Development.
Cold Spring Harb Perspect Biol. 2015 Sep 1;7(9):a015719. doi: 10.1101/cshperspect.a015719.
6
Cortical progenitor biology: key features mediating proliferation versus differentiation.
J Neurochem. 2018 Sep;146(5):500-525. doi: 10.1111/jnc.14338. Epub 2018 Jun 27.
7
The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex.
Development. 2011 Dec;138(23):5067-78. doi: 10.1242/dev.074591. Epub 2011 Oct 26.
8
Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex.
J Neurosci. 1997 Mar 15;17(6):2018-29. doi: 10.1523/JNEUROSCI.17-06-02018.1997.
9
Regulatory mechanisms of cortical laminar development.
Brain Res Rev. 2006 Jun;51(1):72-84. doi: 10.1016/j.brainresrev.2005.10.002. Epub 2005 Dec 15.
10
Differential expression of Pax6 and Ngn2 between pair-generated cortical neurons.
J Neurosci Res. 2004 Dec 15;78(6):784-95. doi: 10.1002/jnr.20347.

引用本文的文献

1
Regulation of translation elongation and integrated stress response in heat-shocked neurons.
Cell Rep. 2025 May 27;44(5):115639. doi: 10.1016/j.celrep.2025.115639. Epub 2025 Apr 24.
3
Centrosome defects cause microcephaly by activating the 53BP1-USP28-TP53 mitotic surveillance pathway.
EMBO J. 2021 Jan 4;40(1):e106118. doi: 10.15252/embj.2020106118. Epub 2020 Nov 23.

本文引用的文献

2
Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios.
Nature. 2016 Jul 14;535(7611):299-302. doi: 10.1038/nature18320.
3
4
Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.
Neuron. 2016 Jan 6;89(1):83-99. doi: 10.1016/j.neuron.2015.12.007.
5
Astrocyte heterogeneity in the brain: from development to disease.
Front Cell Neurosci. 2015 Mar 20;9:76. doi: 10.3389/fncel.2015.00076. eCollection 2015.
6
Specification of excitatory neurons in the developing cerebral cortex: progenitor diversity and environmental influences.
Front Cell Neurosci. 2015 Jan 12;8:449. doi: 10.3389/fncel.2014.00449. eCollection 2014.
7
Deterministic progenitor behavior and unitary production of neurons in the neocortex.
Cell. 2014 Nov 6;159(4):775-88. doi: 10.1016/j.cell.2014.10.027.
8
Primary culture and live imaging of adult neural stem cells and their progeny.
Methods Mol Biol. 2013;1052:1-11. doi: 10.1007/7651_2013_22.
9
Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice.
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):E1045-54. doi: 10.1073/pnas.1219563110. Epub 2013 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验