NanoBioMedical Centre, Adam Mickiewicz University , 85 Umultowska Str., 61614 Poznan, Poland.
CIC biomaGUNE , Paseo Miramón 182, 20009 San Sebastián, Spain.
ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30872-30879. doi: 10.1021/acsami.7b10317. Epub 2017 Sep 1.
Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin-film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained while maintaining high electrocatalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin-film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates toward HER and, furthermore, that the methodology presented here is suitable to produce other transition-metal carbides with improved catalytic and mechanical properties.
为了替代稀缺且昂贵的铂电极,人们希望得到用于析氢反应(HER)的高效、耐蚀电催化剂。由于价格低廉且催化性能相似,金属碳化物薄膜电极是一种很有前途的替代品。然而,大多数研究结构都忽略了长期的化学和结构稳定性,仅关注电化学效率。在此,我们报告了一种新方法,该方法可以基于碳化铌(NbC)轻松沉积和控制薄膜电极的微/纳米结构及其电催化响应。我们将证明,通过提高 NbC 电极的机械性能,可以获得微结构和机械弹性,同时保持高电催化响应。我们还研究了其他参数(如导电性和化学成分)对薄膜电极整体性能的影响。最后,我们表明纳米复合 NbC 电极是析氢反应的有前途的候选材料,此外,本文提出的方法适用于制备具有改进的催化和机械性能的其他过渡金属碳化物。