Suppr超能文献

过渡金属碳化物电催化剂的结构设计与电子调控实现高效析氢。

Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution.

机构信息

Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iCHEM), Fudan University, Shanghai, 200433, China.

出版信息

Adv Mater. 2019 Jan;31(2):e1802880. doi: 10.1002/adma.201802880. Epub 2018 Aug 21.

Abstract

As the key of hydrogen economy, electrocatalytic hydrogen evolution reactions (HERs) depend on the availability of cost-efficient electrocatalysts. Over the past years, there is a rapid rise in noble-metal-free electrocatalysts. Among them, transition metal carbides (TMCs) are highlighted due to their structural and electronic merits, e.g., high conductivity, metallic band states, tunable surface/bulk architectures, etc. Herein, representative efforts and progress made on TMCs are comprehensively reviewed, focusing on the noble-metal-like electronic configuration and the relevant structural/electronic modulation. Briefly, specific nanostructures and carbon-based hybrids are introduced to increase active-site abundance and to promote mass transportation, and heteroatom doping and heterointerface engineering are encouraged to optimize the chemical configurations of active sites toward intrinsically boosted HER kinetics. Finally, a perspective on the future development of TMC electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials in energy chemistry.

摘要

作为氢能经济的关键,电催化析氢反应(HER)依赖于成本效益高的电催化剂的可用性。在过去的几年中,无贵金属电催化剂迅速崛起。在这些催化剂中,过渡金属碳化物(TMC)因其结构和电子优势而备受关注,例如高导电性、金属带态、可调节的表面/体结构等。本文全面综述了 TMC 方面的代表性工作和进展,重点关注贵金属类似的电子构型和相关的结构/电子调节。简要地说,引入了特定的纳米结构和基于碳的杂化材料来增加活性位点的丰度并促进质量传输,鼓励杂原子掺杂和异质界面工程来优化活性位点的化学构型,以提高本征 HER 动力学。最后,对 TMC 电催化剂的未来发展进行了展望。总的来说,本文旨在为能源化学中新兴材料的探索提供一些思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验