Ottenburghs Jente, Megens Hendrik-Jan, Kraus Robert H S, van Hooft Pim, van Wieren Sipke E, Crooijmans Richard P M A, Ydenberg Ronald C, Groenen Martien A M, Prins Herbert H T
Resource Ecology Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands.
Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
BMC Evol Biol. 2017 Aug 22;17(1):201. doi: 10.1186/s12862-017-1048-2.
The impacts of hybridization on the process of speciation are manifold, leading to distinct patterns across the genome. Genetic differentiation accumulates in certain genomic regions, while divergence is hampered in other regions by homogenizing gene flow, resulting in a heterogeneous genomic landscape. A consequence of this heterogeneity is that genomes are mosaics of different gene histories that can be compared to unravel complex speciation and hybridization events. However, incomplete lineage sorting (often the outcome of rapid speciation) can result in similar patterns. New statistical techniques, such as the D-statistic and hybridization networks, can be applied to disentangle the contributions of hybridization and incomplete lineage sorting. We unravel patterns of hybridization and incomplete lineage sorting during and after the diversification of the True Geese (family Anatidae, tribe Anserini, genera Anser and Branta) using an exon-based hybridization network approach and taking advantage of discordant gene tree histories by re-sequencing all taxa of this clade. In addition, we determine the timing of introgression and reconstruct historical effective population sizes for all goose species to infer which demographic or biogeographic factors might explain the observed patterns of introgression.
We find indications for ancient interspecific gene flow during the diversification of the True Geese and were able to pinpoint several putative hybridization events. Specifically, in the genus Branta, both the ancestor of the White-cheeked Geese (Hawaiian Goose, Canada Goose, Cackling Goose and Barnacle Goose) and the ancestor of the Brent Goose hybridized with Red-breasted Goose. One hybridization network suggests a hybrid origin for the Red-breasted Goose, but this scenario seems unlikely and it not supported by the D-statistic analysis. The complex, highly reticulated evolutionary history of the genus Anser hampered the estimation of ancient hybridization events by means of hybridization networks. The reconstruction of historical effective population sizes shows that most species showed a steady increase during the Pliocene and Pleistocene. These large effective population sizes might have facilitated contact between diverging goose species, resulting in the establishment of hybrid zones and consequent gene flow.
Our analyses suggest that the evolutionary history of the True Geese is influenced by introgressive hybridization. The approach that we have used, based on genome-wide phylogenetic incongruence and network analyses, will be a useful procedure to reconstruct the complex evolutionary histories of many naturally hybridizing species groups.
杂交对物种形成过程的影响是多方面的,会导致全基因组呈现出不同的模式。遗传分化在某些基因组区域积累,而在其他区域,由于基因流的同质化作用,分化受到阻碍,从而形成了异质的基因组景观。这种异质性的一个结果是,基因组是不同基因历史的镶嵌体,可以通过比较来揭示复杂的物种形成和杂交事件。然而,不完全谱系分选(通常是快速物种形成的结果)可能导致相似的模式。新的统计技术,如D统计量和杂交网络,可以用于区分杂交和不完全谱系分选的贡献。我们利用基于外显子的杂交网络方法,并通过对该分支的所有分类单元进行重测序,利用不一致的基因树历史,来揭示真鹅(鸭科,雁族,雁属和黑雁属)多样化过程中和之后的杂交和不完全谱系分选模式。此外,我们确定了基因渗入的时间,并重建了所有鹅种的历史有效种群大小,以推断哪些人口统计学或生物地理学因素可能解释观察到的基因渗入模式。
我们发现了真鹅多样化过程中古代种间基因流的迹象,并能够确定几个假定的杂交事件。具体来说,在黑雁属中,白颊雁(夏威夷雁﹑加拿大雁﹑小加拿大雁和黑雁)的祖先和白额黑雁的祖先都与红胸黑雁杂交。一个杂交网络表明红胸黑雁有杂交起源,但这种情况似乎不太可能,并且D统计量分析也不支持这一观点。雁属复杂、高度网状的进化历史阻碍了通过杂交网络对古代杂交事件的估计。历史有效种群大小的重建表明,大多数物种在上新世和更新世期间呈现出稳定增长。这些较大的有效种群大小可能促进了分化的鹅种之间的接触,导致杂交区的建立和随之而来的基因流。
我们的分析表明,真鹅的进化历史受到渐渗杂交的影响。我们基于全基因组系统发育不一致性和网络分析所采用的方法,将是重建许多自然杂交物种组复杂进化历史的有用程序。