Suppr超能文献

铝等离子体纳米屏蔽在细菌的紫外线灭活中的作用。

Aluminum plasmonic nanoshielding in ultraviolet inactivation of bacteria.

机构信息

Baylor University, Waco, Texas, 76706, USA.

Texas A&M University, College Station, Texas, 77843, USA.

出版信息

Sci Rep. 2017 Aug 22;7(1):9026. doi: 10.1038/s41598-017-08593-8.

Abstract

Ultraviolet (UV) irradiation is an effective bacterial inactivation technique with broad applications in environmental disinfection. However, biomedical applications are limited due to the low selectivity, undesired inactivation of beneficial bacteria and damage of healthy tissue. New approaches are needed for the protection of biological cells from UV radiation for the development of controlled treatment and improved biosensors. Aluminum plasmonics offers attractive opportunities for the control of light-matter interactions in the UV range, which have not yet been explored in microbiology. Here, we investigate the effects of aluminum nanoparticles (Al NPs) prepared by sonication of aluminum foil on the UVC inactivation of E. coli bacteria and demonstrate a new radiation protection mechanism via plasmonic nanoshielding. We observe direct interaction of the bacterial cells with Al NPs and elucidate the nanoshielding mechanism via UV plasmonic resonance and nanotailing effects. Concentration and wavelength dependence studies reveal the role and range of control parameters for regulating the radiation dosage to achieve effective UVC protection. Our results provide a step towards developing improved radiation-based bacterial treatments.

摘要

紫外线(UV)辐照是一种有效的细菌灭活技术,在环境消毒中有广泛的应用。然而,由于选择性低、有益细菌的非预期失活以及健康组织的损伤,其在生物医学中的应用受到限制。为了保护生物细胞免受紫外线辐射,需要开发新的方法,以实现可控的治疗和改进的生物传感器。铝等离子体学为控制 UV 范围内的光物质相互作用提供了有吸引力的机会,而这在微生物学中尚未得到探索。在这里,我们研究了通过铝箔超声处理制备的铝纳米粒子(Al NPs)对大肠杆菌细菌的 UVC 灭活的影响,并通过等离子体纳米屏蔽证明了一种新的辐射防护机制。我们观察到细菌细胞与 Al NPs 的直接相互作用,并通过 UV 等离子体共振和纳米尾流效应阐明了纳米屏蔽机制。浓度和波长依赖性研究揭示了调节辐射剂量以实现有效 UVC 保护的控制参数的作用和范围。我们的结果为开发改进的基于辐射的细菌处理方法迈出了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e45/5567371/cae16900b7cd/41598_2017_8593_Fig1_HTML.jpg

相似文献

1
Aluminum plasmonic nanoshielding in ultraviolet inactivation of bacteria.
Sci Rep. 2017 Aug 22;7(1):9026. doi: 10.1038/s41598-017-08593-8.
2
Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs).
Sci Total Environ. 2019 May 15;665:1103-1110. doi: 10.1016/j.scitotenv.2019.02.041. Epub 2019 Feb 8.
3
Protection against UV disinfection of E. coli bacteria and B. subtilis spores ingested by C. elegans nematodes.
Water Res. 2009 Aug;43(14):3397-406. doi: 10.1016/j.watres.2009.05.009. Epub 2009 May 19.
4
Impact of UVA pre-radiation on UVC disinfection performance: Inactivation, repair and mechanism study.
Water Res. 2018 Sep 15;141:279-288. doi: 10.1016/j.watres.2018.05.021. Epub 2018 May 15.
5
Effect of particles and bioflocculation on ultraviolet disinfection of Escherichia coli.
Water Res. 2012 Mar 1;46(3):750-60. doi: 10.1016/j.watres.2011.11.046. Epub 2011 Nov 26.
9
Enhanced inactivation of E. coli by pulsed UV-LED irradiation during water disinfection.
Sci Total Environ. 2019 Feb 10;650(Pt 1):210-215. doi: 10.1016/j.scitotenv.2018.08.367. Epub 2018 Aug 27.
10
Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria.
Water Res. 2019 Jun 15;157:218-227. doi: 10.1016/j.watres.2019.03.080. Epub 2019 Mar 29.

引用本文的文献

2
Advances in Waveguide Bragg Grating Structures, Platforms, and Applications: An Up-to-Date Appraisal.
Biosensors (Basel). 2022 Jul 8;12(7):497. doi: 10.3390/bios12070497.
3
Uncovering the Evolution of Low-Energy Plasmons in Nanopatterned Aluminum Plasmonics on Graphene.
Nano Lett. 2022 Jul 27;22(14):5825-5831. doi: 10.1021/acs.nanolett.2c01512. Epub 2022 Jul 12.
7
Multi-pulse laser-induced bubble formation and nanoparticle aggregation using MoS nanoparticles.
Sci Rep. 2020 Sep 25;10(1):15753. doi: 10.1038/s41598-020-72689-x.
8
Plasmonics for Biosensing.
Materials (Basel). 2019 Apr 30;12(9):1411. doi: 10.3390/ma12091411.

本文引用的文献

1
Antibacterial Performance of a PCL-PDMAEMA Blend Nanofiber-Based Scaffold Enhanced with Immobilized Silver Nanoparticles.
ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9304-9314. doi: 10.1021/acsami.6b14411. Epub 2017 Mar 8.
4
Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.
Astrobiology. 2016 Apr;16(4):301-10. doi: 10.1089/ast.2015.1365. Epub 2016 Mar 30.
5
Deep-UV biological imaging by lanthanide ion molecular protection.
Biomed Opt Express. 2015 Dec 18;7(1):158-70. doi: 10.1364/BOE.7.000158. eCollection 2016 Jan 1.
6
Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation.
Nano Lett. 2016 Feb 10;16(2):1478-84. doi: 10.1021/acs.nanolett.5b05149. Epub 2016 Jan 29.
7
Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting.
ACS Nano. 2015 Jun 23;9(6):6206-13. doi: 10.1021/acsnano.5b01541. Epub 2015 Jun 11.
8
Nanoparticles in photodynamic therapy.
Chem Rev. 2015 Feb 25;115(4):1990-2042. doi: 10.1021/cr5004198. Epub 2015 Jan 20.
9
Color-selective and CMOS-compatible photodetection based on aluminum plasmonics.
Adv Mater. 2014 Sep;26(36):6318-23. doi: 10.1002/adma.201401168. Epub 2014 Aug 5.
10
Nanoparticles for photothermal therapies.
Nanoscale. 2014 Aug 21;6(16):9494-530. doi: 10.1039/c4nr00708e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验