Baylor University, Waco, Texas, 76706, USA.
Texas A&M University, College Station, Texas, 77843, USA.
Sci Rep. 2017 Aug 22;7(1):9026. doi: 10.1038/s41598-017-08593-8.
Ultraviolet (UV) irradiation is an effective bacterial inactivation technique with broad applications in environmental disinfection. However, biomedical applications are limited due to the low selectivity, undesired inactivation of beneficial bacteria and damage of healthy tissue. New approaches are needed for the protection of biological cells from UV radiation for the development of controlled treatment and improved biosensors. Aluminum plasmonics offers attractive opportunities for the control of light-matter interactions in the UV range, which have not yet been explored in microbiology. Here, we investigate the effects of aluminum nanoparticles (Al NPs) prepared by sonication of aluminum foil on the UVC inactivation of E. coli bacteria and demonstrate a new radiation protection mechanism via plasmonic nanoshielding. We observe direct interaction of the bacterial cells with Al NPs and elucidate the nanoshielding mechanism via UV plasmonic resonance and nanotailing effects. Concentration and wavelength dependence studies reveal the role and range of control parameters for regulating the radiation dosage to achieve effective UVC protection. Our results provide a step towards developing improved radiation-based bacterial treatments.
紫外线(UV)辐照是一种有效的细菌灭活技术,在环境消毒中有广泛的应用。然而,由于选择性低、有益细菌的非预期失活以及健康组织的损伤,其在生物医学中的应用受到限制。为了保护生物细胞免受紫外线辐射,需要开发新的方法,以实现可控的治疗和改进的生物传感器。铝等离子体学为控制 UV 范围内的光物质相互作用提供了有吸引力的机会,而这在微生物学中尚未得到探索。在这里,我们研究了通过铝箔超声处理制备的铝纳米粒子(Al NPs)对大肠杆菌细菌的 UVC 灭活的影响,并通过等离子体纳米屏蔽证明了一种新的辐射防护机制。我们观察到细菌细胞与 Al NPs 的直接相互作用,并通过 UV 等离子体共振和纳米尾流效应阐明了纳米屏蔽机制。浓度和波长依赖性研究揭示了调节辐射剂量以实现有效 UVC 保护的控制参数的作用和范围。我们的结果为开发改进的基于辐射的细菌处理方法迈出了一步。