Suppr超能文献

从不确定的医学数据中估计脑动脉的无创血流特征。

Non Invasive Blood Flow Features Estimation in Cerebral Arteries from Uncertain Medical Data.

机构信息

Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier, CC051, 34095, Montpellier, France.

Institut d'Imagerie Fonctionnelle Humaine (I2FH) Hôpital Gui de Chauliac, Montpellier, France.

出版信息

Ann Biomed Eng. 2017 Nov;45(11):2574-2591. doi: 10.1007/s10439-017-1904-7. Epub 2017 Aug 22.

Abstract

A methodology for non-invasive estimation of the pressure in internal carotid arteries is proposed. It uses data assimilation and Ensemble Kalman filters in order to identify unknown parameters in a mathematical description of the cerebral network. The approach uses patient specific blood flow rates extracted from Magnetic Resonance Angiography and Magnetic Resonance Imaging. This construction is necessary as the simulation of blood flows in complex arterial networks, such as the circle of Willis, is not straightforward because hemodynamic parameters are unknown as well as the boundary conditions necessary to close this complex system with many outlets. For instance, in clinical cases, the values of Windkessel model parameters or the Young's modulus and the thickness of the arteries are not available on per-patient cases. To make the approach computational efficient, a reduced order zero-dimensional compartment model is used for blood flow dynamics. Using this simplified model, the proof-of-concept study demonstrates how to use the EnKF as an optimization tool to find parameters and how to make the inverse hemodynamic problem tractable. The predicted blood flow rates in the internal carotid arteries and the predicted systolic and diastolic brachial blood pressures are found to be in good agreement with the clinical measurements.

摘要

提出了一种用于无创估计颈内动脉内压力的方法。它使用数据同化和集合卡尔曼滤波器来识别大脑网络数学描述中的未知参数。该方法使用从磁共振血管造影和磁共振成像中提取的患者特定血流率。由于复杂动脉网络(如 Willis 环)中的血流模拟并不直接,因为血流动力学参数以及关闭具有许多出口的复杂系统所需的边界条件都是未知的,因此这种构建是必要的。例如,在临床情况下,无法在每个患者的情况下获得 Windkessel 模型参数或动脉的杨氏模量和厚度的值。为了使该方法具有计算效率,使用简化的零维腔室模型进行血流动力学。使用此简化模型,概念验证研究演示了如何使用 EnKF 作为优化工具来查找参数以及如何使逆血液动力学问题具有可操作性。内部颈动脉的预测血流率以及预测的收缩压和舒张压与临床测量值吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验