Suppr超能文献

脑循环模拟中对侧支血流的不确定性量化:基于机器学习的代理模型方法。

Uncertainty quantification in cerebral circulation simulations focusing on the collateral flow: Surrogate model approach with machine learning.

机构信息

Department of Mechanical Engineering, The University of Tokyo, Meguro-ku, Tokyo, Japan.

Interfaculty Initiative in Information Studies, The University of Tokyo, Meguro-ku, Tokyo, Japan.

出版信息

PLoS Comput Biol. 2022 Jul 22;18(7):e1009996. doi: 10.1371/journal.pcbi.1009996. eCollection 2022 Jul.

Abstract

Collateral circulation in the circle of Willis (CoW), closely associated with disease mechanisms and treatment outcomes, can be effectively investigated using one-dimensional-zero-dimensional hemodynamic simulations. As the entire cardiovascular system is considered in the simulation, it captures the systemic effects of local arterial changes, thus reproducing collateral circulation that reflects biological phenomena. The simulation facilitates rapid assessment of clinically relevant hemodynamic quantities under patient-specific conditions by incorporating clinical data. During patient-specific simulations, the impact of clinical data uncertainty on the simulated quantities should be quantified to obtain reliable results. However, as uncertainty quantification (UQ) is time-consuming and computationally expensive, its implementation in time-sensitive clinical applications is considered impractical. Therefore, we constructed a surrogate model based on machine learning using simulation data. The model accurately predicts the flow rate and pressure in the CoW in a few milliseconds. This reduced computation time enables the UQ execution with 100 000 predictions in a few minutes on a single CPU core and in less than a minute on a GPU. We performed UQ to predict the risk of cerebral hyperperfusion (CH), a life-threatening condition that can occur after carotid artery stenosis surgery if collateral circulation fails to function appropriately. We predicted the statistics of the postoperative flow rate increase in the CoW, which is a measure of CH, considering the uncertainties of arterial diameters, stenosis parameters, and flow rates measured using the patients' clinical data. A sensitivity analysis was performed to clarify the impact of each uncertain parameter on the flow rate increase. Results indicated that CH occurred when two conditions were satisfied simultaneously: severe stenosis and when arteries of small diameter serve as the collateral pathway to the cerebral artery on the stenosis side. These findings elucidate the biological aspects of cerebral circulation in terms of the relationship between collateral flow and CH.

摘要

Willis 环(CoW)中的侧支循环与疾病机制和治疗结果密切相关,可以使用一维-零维血流动力学模拟进行有效研究。由于模拟中考虑了整个心血管系统,因此它可以捕获局部动脉变化的系统影响,从而再现反映生物学现象的侧支循环。通过纳入临床数据,该模拟可以在患者特定条件下快速评估与临床相关的血流动力学量。在患者特定模拟中,应量化临床数据不确定性对模拟量的影响,以获得可靠的结果。然而,由于不确定性量化(UQ)既耗时又计算成本高,因此在时间敏感的临床应用中实施被认为不切实际。因此,我们使用模拟数据构建了基于机器学习的替代模型。该模型可以在几毫秒内准确预测 CoW 中的流速和压力。这减少了计算时间,使 UQ 能够在单个 CPU 内核上执行 10 万次预测,在 GPU 上执行不到一分钟。我们进行了 UQ 以预测脑过度灌注(CH)的风险,CH 是一种危及生命的情况,如果侧支循环不能正常工作,可能会在颈动脉狭窄手术后发生。我们预测了 CoW 中术后血流速度增加的统计数据,这是 CH 的一种衡量标准,同时考虑了动脉直径、狭窄参数和使用患者临床数据测量的血流率的不确定性。进行了敏感性分析以阐明每个不确定参数对流速增加的影响。结果表明,当同时满足两个条件时会发生 CH:严重狭窄和小直径的动脉作为狭窄侧大脑动脉的侧支途径。这些发现阐明了侧支血流与 CH 之间的关系,从脑循环的生物学角度阐明了这一关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f4/9307280/bab52e26f31f/pcbi.1009996.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验