Suppr超能文献

一种用于模拟大型动脉网络中血流的有效分形树闭合模型。

An effective fractal-tree closure model for simulating blood flow in large arterial networks.

作者信息

Perdikaris Paris, Grinberg Leopold, Karniadakis George Em

机构信息

Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA,

出版信息

Ann Biomed Eng. 2015 Jun;43(6):1432-42. doi: 10.1007/s10439-014-1221-3. Epub 2014 Dec 16.

Abstract

The aim of the present work is to address the closure problem for hemodynamic simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii [Formula: see text]). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to outflow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for outflow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 min. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels after attaching the fractal trees), returning physiological flow and pressure wave predictions without requiring any parameter estimation or calibration procedures. We present a novel methodology to overcome substantial cut-off radius sensitivities.

摘要

本工作的目的是通过开发一个灵活有效的模型来解决血流动力学模拟中的封闭问题,该模型能准确地在下游脉管系统中分配血流,并能稳定地提供生理压力流出边界条件。为实现这一目标,我们在顺应性动脉的自相似网络中使用非线性一维模型对亚像素脉管系统中的血流进行建模,该网络模仿中尺度血管系统(半径[公式:见原文])中血管的结构和层次。我们引入了小动脉和小动脉的可变血管长度与半径比,同时还考虑了小动脉和小动脉中的非牛顿血液流变学和动脉壁粘弹性效应。这种方法旨在克服通常出现在结构化树和线性化阻抗模型中的显著截止半径敏感性。所提出的模型对分形网络端点处应用的流出边界条件不敏感,因此不需要通常用于流出条件的电阻/电容参数校准。即使从零流量初始条件开始,所提出的模型在两个心动周期内也会收敛到周期性状态。由此产生的分形树通常由数千到数百万条动脉组成,这就需要高效的并行算法。为此,我们将一个利用MPI/OpenMP混合编程范式的间断伽辽金求解器扩展到数千个计算机核心,并能以每5分钟一个周期的速度模拟数百万个动脉段网络中的血流。所提出的模型已在一个大型复杂的颅骨网络上进行了广泛测试,该网络有50条源自患者的母动脉和21个连接分形树的出口,总共形成了一个多达4392484条血管的网络,以及一个详细的手臂网络,有276条母动脉和103个出口(连接分形树后共有702188条血管),无需任何参数估计或校准程序即可返回生理血流和压力波预测结果。我们提出了一种新颖的方法来克服显著的截止半径敏感性。

相似文献

4
Outflow boundary conditions for blood flow in arterial trees.动脉树中血流的流出边界条件。
PLoS One. 2015 May 22;10(5):e0128597. doi: 10.1371/journal.pone.0128597. eCollection 2015.
8
Computation of hemodynamics in the circle of Willis.Willis 环血流动力学的计算。
Stroke. 2007 Sep;38(9):2500-5. doi: 10.1161/STROKEAHA.107.482471. Epub 2007 Aug 2.
9
Computational models of blood flow in the circle of Willis.Willis 环中血流的计算模型。
Comput Methods Biomech Biomed Engin. 2000;4(1):1-26. doi: 10.1080/10255840008907996.

引用本文的文献

1
Bioengineering vascularization.生物工程血管化。
Development. 2024 Dec 1;151(23). doi: 10.1242/dev.204455. Epub 2024 Nov 29.
2
Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review.脑血流动力学的多维建模:系统综述
Bioengineering (Basel). 2024 Jan 11;11(1):72. doi: 10.3390/bioengineering11010072.
10
Detection of arterial wall abnormalities via Bayesian model selection.通过贝叶斯模型选择检测动脉壁异常。
R Soc Open Sci. 2019 Oct 16;6(10):182229. doi: 10.1098/rsos.182229. eCollection 2019 Oct.

本文引用的文献

1
Fractional-order viscoelasticity in one-dimensional blood flow models.一维血流模型中的分数阶粘弹性
Ann Biomed Eng. 2014 May;42(5):1012-23. doi: 10.1007/s10439-014-0970-3. Epub 2014 Jan 11.
3
Parallel multiscale simulations of a brain aneurysm.脑动脉瘤的并行多尺度模拟
J Comput Phys. 2013 Jul 1;244:131-147. doi: 10.1016/j.jcp.2012.08.023.
6
Validation of a patient-specific one-dimensional model of the systemic arterial tree.验证一种用于全身动脉树的患者特异性一维模型。
Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H1173-82. doi: 10.1152/ajpheart.00821.2010. Epub 2011 May 27.
8
Branching patterns for arterioles and venules of the human cerebral cortex.人脑皮质小动脉和小静脉的分支模式。
Brain Res. 2010 Feb 8;1313:62-78. doi: 10.1016/j.brainres.2009.12.007. Epub 2009 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验