Department of Electrical Engineering and Computer Science (EECS), Masdar Institute of Science and Technology Abu Dhabi, United Arab Emirates.
Nanotechnology. 2017 Nov 3;28(44):445201. doi: 10.1088/1361-6528/aa87e5. Epub 2017 Aug 23.
The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the AlO/ZrO/AlO system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.
在纳米尺度上对物质的操控使材料产生了原本在块状状态下难以或不可能实现的特性。在这里,我们展示了在不同衬底终端上通过原子层沉积生长的氧化锆纳米岛。透射电子显微镜和拉曼测量表明,纳米岛由立方晶相的纳米晶组成,这导致介电常数(κ∼35)高于非晶相的情况(κ∼20)。X 射线光电子能谱测量表明,在 AlO/ZrO/AlO 系统中形成了深量子阱,这与氧化锆的体相状态有很大的不同,更有利于记忆应用。最后,制备了具有 ZrO 纳米岛电荷俘获层的存储器,由于纳米岛的高介电常数,除了具有优异的耐久性和保持特性外,在 5 V 的低编程电压下获得了 4.5 V 的宽存储窗口。