Wetz A J, Mueller M M, Walliser K, Foest C, Wand S, Brandes I F, Waeschle R M, Bauer M
Department of Anaesthesiology, University of Goettingen, Goettingen, Germany.
Department of Anaesthesiology, Intensive Care, Emergeny Medicine and Pain Management, KRH Klinikum Nordstadt, Hannover, Germany.
Acta Anaesthesiol Scand. 2017 Nov;61(10):1262-1269. doi: 10.1111/aas.12961. Epub 2017 Aug 22.
To ensure safe general anesthesia, manually controlled anesthesia requires constant monitoring and numerous manual adjustments of the gas dosage, especially for low- and minimal-flow anesthesia. Oxygen flow-rate and administration of volatile anesthetics can also be controlled automatically by anesthesia machines using the end-tidal control technique, which ensures constant end-tidal concentrations of oxygen and anesthetic gas via feedback and continuous adjustment mechanisms. We investigated the hypothesis that end-tidal control is superior to manually controlled minimal-flow anesthesia (0.5 l/min).
In this prospective trial, we included 64 patients undergoing elective surgery under general anesthesia. We analyzed the precision of maintenance of the sevoflurane concentration (1.2-1.4%) and expiratory oxygen (35-40%) and the number of necessary adjustments.
Target-concentrations of sevoflurane and oxygen were maintained at more stable levels with the use of end-tidal control (during the first 15 min 28% vs. 51% and from 15 to 60 min 1% vs. 19% deviation from sevoflurane target, P < 0.0001; 45% vs. 86% and 5% vs. 15% deviation from O target, P < 0.01, respectively), while manual controlled minimal-flow anesthesia required more interventions to maintain the defined target ranges of sevoflurane (8, IQR 6-12) and end-tidal oxygen (5, IQR 3-6). The target-concentrations were reached earlier with the use of end-tidal compared with manual controlled minimal-flow anesthesia but required slightly greater use of anesthetic agents (6.9 vs. 6.0 ml/h).
End-tidal control is a superior technique for setting and maintaining oxygen and anesthetic gas concentrations in a stable and rapid manner compared with manual control. Consequently, end-tidal control can effectively support the anesthetist.
为确保全身麻醉安全,手动控制麻醉需要持续监测并对气体剂量进行多次手动调整,尤其是在低流量和微量流量麻醉时。麻醉机也可采用呼气末控制技术自动控制氧气流速和挥发性麻醉剂的给药,该技术通过反馈和持续调整机制确保呼气末氧气和麻醉气体浓度恒定。我们研究了呼气末控制优于手动控制的微量流量麻醉(0.5升/分钟)这一假设。
在这项前瞻性试验中,我们纳入了64例接受全身麻醉下择期手术的患者。我们分析了七氟醚浓度(1.2 - 1.4%)和呼气末氧气(35 - 40%)维持的精确性以及所需调整的次数。
使用呼气末控制时,七氟醚和氧气的目标浓度维持在更稳定的水平(在最初15分钟内,与七氟醚目标浓度的偏差分别为28%对51%,15至60分钟时为1%对19%,P < 0.0001;与氧气目标浓度的偏差分别为45%对86%,5%对15%,P < 0.01),而手动控制的微量流量麻醉需要更多干预来维持七氟醚(8次,四分位间距6 - 12次)和呼气末氧气(5次,四分位间距3 - 6次)的既定目标范围。与手动控制的微量流量麻醉相比,使用呼气末控制时目标浓度达到得更早,但麻醉剂的使用量略多(6.9毫升/小时对6.0毫升/小时)。
与手动控制相比,呼气末控制是一种以稳定且快速的方式设定和维持氧气及麻醉气体浓度的更优技术。因此,呼气末控制可有效辅助麻醉师。