Liu Beijun, Zhang Wei, Gou Sanhu, Huang Haifeng, Yao Jia, Yang Zhibin, Liu Hui, Zhong Chao, Liu Beiyin, Ni Jingman, Wang Rui
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
J Pept Sci. 2017 Nov;23(11):824-832. doi: 10.1002/psc.3031. Epub 2017 Aug 23.
Cationic antimicrobial peptides have attracted increasing attention as a novel class of antibiotics to treat infectious diseases caused by pathogenic bacteria. However, susceptibility to protease is a shortcoming in their development. Cyclization is one approach to increase the proteolytic resistance of peptides. Therefore, to improve the proteolytic resistance of Polybia-MPI, we have synthesized the MPI cyclic analogs C-MPI-1 (i-to-i+4) and C-MPI-2 (i-to-i+6) by copper(I)-catalyzed azide-alkyne cycloaddition. Compared with MPI, C-MPI-1 displayed sustained antimicrobial activity and had enhanced anti-trypsin resistance, while C-MPI-2 displayed no antimicrobial activity. The relationship between peptide structure and bioactivity was further investigated by probing the secondary structure of the peptides by circular dichroism. This showed that C-MPI-1 adopted an α-helical structure in aqueous solution and, interestingly, had increased α-helical conformation in 30 mM sodium dodecyl sulfate and 50% trifluoroethyl alcohol compared with MPI. C-MPI-2 that was not α-helical in structure, suggesting that the propensity for α-helix conformation may play an important role in cyclic peptide design. In addition, scanning electron microscopy, propidium iodide uptake, and membrane permeabilization assays indicated that MPI and the optimized analog C-MPI-1 had membrane-active action modes, indicating that the peptides would not be susceptible to conventional resistance mechanisms. Our study provides additional insight into the influence of intramolecular cyclization at various positions on peptide structure and biological activity. In conclusion, the design and synthesis of cyclic analogs via click chemistry offer a new strategy for the development of stable antimicrobial agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
阳离子抗菌肽作为一类新型抗生素,用于治疗由病原菌引起的传染病,已引起越来越多的关注。然而,对蛋白酶敏感是其开发过程中的一个缺点。环化是提高肽对蛋白水解抗性的一种方法。因此,为了提高多比亚 - MPI的蛋白水解抗性,我们通过铜(I)催化的叠氮化物 - 炔烃环加成反应合成了MPI环类似物C - MPI - 1(i至i + 4)和C - MPI - 2(i至i + 6)。与MPI相比,C - MPI - 1表现出持续的抗菌活性,并具有增强的抗胰蛋白酶抗性,而C - MPI - 2则没有抗菌活性。通过圆二色性探测肽的二级结构,进一步研究了肽结构与生物活性之间的关系。结果表明,C - MPI - 1在水溶液中采用α螺旋结构,有趣的是,与MPI相比,在30 mM十二烷基硫酸钠和50%三氟乙醇中α螺旋构象增加。C - MPI - 2在结构上不是α螺旋,这表明α螺旋构象的倾向可能在环肽设计中起重要作用。此外,扫描电子显微镜、碘化丙啶摄取和膜通透性测定表明,MPI和优化的类似物C - MPI - 1具有膜活性作用模式,表明这些肽不易受到传统抗性机制的影响。我们的研究为分子内环化在不同位置对肽结构和生物活性的影响提供了更多的见解。总之,通过点击化学设计和合成环类似物为开发稳定的抗菌剂提供了一种新策略。版权所有©2017欧洲肽学会和约翰威立父子有限公司。