Department of Medical Imaging, Renji Hospital, Medical School of Jiaotong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China.
Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China.
Hippocampus. 2017 Dec;27(12):1250-1263. doi: 10.1002/hipo.22794. Epub 2017 Sep 27.
Adult neurogenesis and synaptic remodeling persist as a unique form of structural and functional plasticity in the hippocampal dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles due to the existence of neural stem cells (NSCs). Transplantation of NSCs may represent a promising approach for the recovery of neural circuits. Here, we aimed to examine effects of highly neuronal differentiation of NSCs transplantation on hippocampal neurogenesis, metabolic changes and synaptic formation in APP/PS1 mice. 12-month-old APP/PS1 mice were used for behavioral tests, immunohistochemistry, western blot, transmission electron microscopy and proton magnetic resonance spectroscopy (1H-MRS). The results showed that N-acetylaspartate (NAA) and Glutamate (Glu) levels were increased in the Tg-NSC mice compared with the Tg-PBS and Tg-AD mice 10 weeks after NSCs transplantation. NSC-induced an increase in expression of synaptophysin and postsynaptic protein-95, and the number of neurons with normal synapses was significantly increased in Tg-NSC mice. More doublecortin-, BrdU/NeuN- and Nestin-positive neurons were observed in the hippocampal DG and SVZ of the Tg-NSC mice. This is the first demonstration that engrafted NSCs with a high differentiation rate to neurons can enhance neurogenesis in a mouse model of AD and can be detected by 1H-MRS in vivo. It is suggested that engraft of NSCs can restore memory and promote endogenous neurogenesis and synaptic remodeling, moreover, 1H-MRS can detect metabolite changes in AD mice in vivo. The observed changes in NAA/creatine (Cr) and glutamate (Glu)/Cr may be correlated with newborn neurons and new synapse formation.
成体神经发生和突触重塑在海马齿状回(DG)和侧脑室室下区(SVZ)中作为一种独特的结构和功能可塑性形式持续存在,这是由于神经干细胞(NSCs)的存在。NSC 的移植可能代表了恢复神经回路的一种有前途的方法。在这里,我们旨在研究 NSCs 高度神经元分化移植对 APP/PS1 小鼠海马神经发生、代谢变化和突触形成的影响。我们使用 12 个月大的 APP/PS1 小鼠进行行为测试、免疫组织化学、western blot、透射电子显微镜和质子磁共振波谱(1H-MRS)。结果表明,与 Tg-PBS 和 Tg-AD 小鼠相比,NSC 移植 10 周后,Tg-NSC 小鼠的 N-乙酰天冬氨酸(NAA)和谷氨酸(Glu)水平升高。NSC 诱导突触小体蛋白和突触后蛋白-95 的表达增加,并且 Tg-NSC 小鼠中具有正常突触的神经元数量明显增加。在 Tg-NSC 小鼠的海马 DG 和 SVZ 中观察到更多的双皮质素、BrdU/NeuN-和巢蛋白阳性神经元。这是首次证明具有高神经元分化率的移植 NSCs 可以增强 AD 小鼠模型中的神经发生,并且可以通过体内 1H-MRS 检测到。这表明移植 NSCs 可以恢复记忆,促进内源性神经发生和突触重塑,此外,1H-MRS 可以在体内检测到 AD 小鼠的代谢物变化。NAA/Cr 和谷氨酸(Glu)/Cr 的观察到的变化可能与新生神经元和新突触形成有关。