Suppr超能文献

预测乳腺癌患者腋窝淋巴结状态的列线图的开发。

Development of nomograms to predict axillary lymph node status in breast cancer patients.

作者信息

Chen Kai, Liu Jieqiong, Li Shunrong, Jacobs Lisa

机构信息

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.

Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.

出版信息

BMC Cancer. 2017 Aug 23;17(1):561. doi: 10.1186/s12885-017-3535-7.

Abstract

BACKGROUND

Prediction of axillary lymph node (ALN) status preoperatively is critical in the management of breast cancer patients. This study aims to develop a new set of nomograms to accurately predict ALN status.

METHODS

We searched the National Cancer Database to identify eligible female breast cancer patients with profiles containing critical information. Patients diagnosed in 2010-2011 and 2012-2013 were designated the training (n = 99,618) and validation (n = 101,834) cohorts, respectively. We used binary logistic regression to investigate risk factors for ALN status and to develop a new set of nomograms to determine the probability of having any positive ALNs and N2-3 disease. We used ROC analysis and calibration plots to assess the discriminative ability and accuracy of the nomograms, respectively.

RESULTS

In the training cohort, we identified age, quadrant of the tumor, tumor size, histology, ER, PR, HER2, tumor grade and lymphovascular invasion as significant predictors of ALNs status. Nomogram-A was developed to predict the probability of having any positive ALNs (P_any) in the full population with a C-index of 0.788 and 0.786 in the training and validation cohorts, respectively. In patients with positive ALNs, Nomogram-B was developed to predict the conditional probability of having N2-3 disease (P_con) with a C-index of 0.680 and 0.677 in the training and validation cohorts, respectively. The absolute probability of having N2-3 disease can be estimated by P_any*P_con. Both of the nomograms were well-calibrated.

CONCLUSIONS

We developed a set of nomograms to predict the ALN status in breast cancer patients.

摘要

背景

术前预测腋窝淋巴结(ALN)状态对乳腺癌患者的治疗至关重要。本研究旨在开发一套新的列线图以准确预测ALN状态。

方法

我们检索了国家癌症数据库,以确定符合条件的女性乳腺癌患者,其资料包含关键信息。分别将2010 - 2011年和2012 - 2013年诊断的患者指定为训练队列(n = 99,618)和验证队列(n = 101,834)。我们使用二元逻辑回归研究ALN状态的危险因素,并开发一套新的列线图以确定有任何阳性ALN和N2 - 3期疾病的概率。我们分别使用ROC分析和校准图来评估列线图的鉴别能力和准确性。

结果

在训练队列中,我们确定年龄、肿瘤象限、肿瘤大小、组织学、雌激素受体(ER)、孕激素受体(PR)、人表皮生长因子受体2(HER2)、肿瘤分级和淋巴管侵犯为ALN状态的重要预测因素。开发了列线图A来预测全人群中有任何阳性ALN的概率(P_any),在训练队列和验证队列中的C指数分别为0.788和0.786。在有阳性ALN的患者中,开发了列线图B来预测有N2 - 3期疾病的条件概率(P_con),在训练队列和验证队列中的C指数分别为0.680和0.677。有N2 - 3期疾病的绝对概率可通过P_any*P_con估计。两个列线图的校准效果均良好。

结论

我们开发了一套列线图来预测乳腺癌患者的ALN状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e086/5569510/b4a605b3ef60/12885_2017_3535_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验