Krishnan Vijai, Maddox J Wesley, Rodriguez Tyler, Gleason Evanna
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana.
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
J Neurophysiol. 2017 Nov 1;118(5):2842-2852. doi: 10.1152/jn.00511.2017. Epub 2017 Aug 23.
γ-Amino butyric acid (GABA) and glycine typically mediate synaptic inhibition because their ligand-gated ion channels support the influx of Cl However, the electrochemical gradient for Cl across the postsynaptic plasma membrane determines the voltage response of the postsynaptic cell. Typically, low cytosolic Cl levels support inhibition, whereas higher levels of cytosolic Cl can suppress inhibition or promote depolarization. We previously reported that nitric oxide (NO) releases Cl from acidic organelles and transiently elevates cytosolic Cl, making the response to GABA and glycine excitatory. In this study, we test the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in the NO-dependent efflux of organellar Cl We first establish the mRNA and protein expression of CFTR in our model system, cultured chick retinal amacrine cells. Using whole cell voltage-clamp recordings of currents through GABA-gated Cl channels, we examine the effects of pharmacological inhibition of CFTR on the NO-dependent release of internal Cl To interfere with the expression of CFTR, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing. We find that both pharmacological inhibition and CRISPR/Cas9-mediated knockdown of CFTR block the ability of NO to release Cl from internal stores. These results demonstrate that CFTR is required for the NO-dependent efflux of Cl from acidic organelles. Although CFTR function has been studied extensively in the context of epithelia, relatively little is known about its function in neurons. We show that CFTR is involved in an NO-dependent release of Cl from acidic organelles. This internal function of CFTR is particularly relevant to neuronal physiology because postsynaptic cytosolic Cl levels determine the outcome of GABA- and glycinergic synaptic signaling. Thus the CFTR may play a role in regulating synaptic transmission.
γ-氨基丁酸(GABA)和甘氨酸通常介导突触抑制,因为它们的配体门控离子通道支持氯离子内流。然而,氯离子跨突触后质膜的电化学梯度决定了突触后细胞的电压反应。通常,胞质氯离子水平较低时支持抑制作用,而胞质氯离子水平较高时则可抑制抑制作用或促进去极化。我们之前报道过,一氧化氮(NO)可从酸性细胞器中释放氯离子并短暂升高胞质氯离子水平,从而使对GABA和甘氨酸的反应变为兴奋性。在本研究中,我们检验了囊性纤维化跨膜传导调节因子(CFTR)参与NO依赖性细胞器氯离子外流的假说。我们首先在我们的模型系统——培养的鸡视网膜无长突细胞中确定CFTR的mRNA和蛋白表达。通过对GABA门控氯离子通道电流进行全细胞电压钳记录,我们研究了CFTR的药理学抑制对NO依赖性内部氯离子释放的影响。为了干扰CFTR的表达,我们使用了成簇规律间隔短回文重复序列(CRISPR)/Cas9基因组编辑技术。我们发现,CFTR的药理学抑制和CRISPR/Cas9介导的敲低均会阻断NO从内部储存库中释放氯离子的能力。这些结果表明,CFTR是NO依赖性酸性细胞器氯离子外流所必需的。尽管CFTR的功能已在上皮细胞的背景下得到广泛研究,但对其在神经元中的功能了解相对较少。我们表明,CFTR参与了NO依赖性酸性细胞器氯离子释放。CFTR的这种内在功能与神经元生理学特别相关,因为突触后胞质氯离子水平决定了GABA能和甘氨酸能突触信号传导的结果。因此,CFTR可能在调节突触传递中发挥作用。