Suppr超能文献

相衬成像X射线计算机断层扫描:利用拓扑和几何特征对人髌软骨基质进行定量表征。

Phase contrast imaging X-ray computed tomography: Quantitative characterization of human patellar cartilage matrix with topological and geometrical features.

作者信息

Nagarajan Mahesh B, Coan Paola, Huber Markus B, Diemoz Paul C, Wismüller Axel

机构信息

Departments of Biomedical Engineering & Imaging Sciences, University of Rochester, New York, United States.

Faculty of Medicine & Institute of Clinical Radiology, Ludwig Maximilians University, Munich Germany.

出版信息

Proc SPIE Int Soc Opt Eng. 2014 Feb;9038. doi: 10.1117/12.2042395. Epub 2014 Mar 13.

Abstract

Current assessment of cartilage is primarily based on identification of indirect markers such as joint space narrowing and increased subchondral bone density on x-ray images. In this context, phase contrast CT imaging (PCI-CT) has recently emerged as a novel imaging technique that allows a direct examination of chondrocyte patterns and their correlation to osteoarthritis through visualization of cartilage soft tissue. This study investigates the use of topological and geometrical approaches for characterizing chondrocyte patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage. For this purpose, topological features derived from Minkowski Functionals and geometric features derived from the Scaling Index Method (SIM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of healthy and osteoarthritic specimens of human patellar cartilage. The extracted features were then used in a machine learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with high-dimensional geometrical feature vectors derived from SIM (0.95 ± 0.06) which outperformed all Minkowski Functionals (p < 0.001). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving SIM-derived geometrical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

摘要

目前对软骨的评估主要基于对间接标志物的识别,如X线图像上的关节间隙变窄和软骨下骨密度增加。在此背景下,相衬CT成像(PCI-CT)最近作为一种新型成像技术出现,它能够通过软骨软组织可视化直接检查软骨细胞模式及其与骨关节炎的相关性。本研究调查了在存在和不存在骨关节炎损伤的情况下,使用拓扑和几何方法来表征膝关节软骨基质径向区域的软骨细胞模式。为此,从人类髌软骨健康和骨关节炎标本的PCI-CT图像上标注的842个感兴趣区域(ROI)中提取了源自闵可夫斯基泛函的拓扑特征和源自缩放指数法(SIM)的几何特征。然后,将提取的特征用于涉及支持向量回归的机器学习任务,以将ROI分类为健康或骨关节炎。使用受试者操作特征(ROC)曲线下面积(AUC)评估分类性能。观察到源自SIM的高维几何特征向量具有最佳分类性能(0.95±0.06),其优于所有闵可夫斯基泛函(p<0.001)。这些结果表明,这种涉及源自SIM的几何特征的人类髌软骨基质中软骨细胞模式的定量分析能够高精度地区分健康组织和骨关节炎组织。

相似文献

本文引用的文献

7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验