Suppr超能文献

用于研究幼虫有害冷觉检测机制和多模式感觉处理的行为学和功能分析

Behavioral and Functional Assays for Investigating Mechanisms of Noxious Cold Detection and Multimodal Sensory Processing in Larvae.

作者信息

Patel Atit A, Cox Daniel N

机构信息

Neuroscience Institute, Georgia State University, Atlanta, GA, USA.

出版信息

Bio Protoc. 2017 Jul 5;7(13). doi: 10.21769/BioProtoc.2388.

Abstract

To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling studies of intracellular calcium dynamics in intact larvae. We identified class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in larvae.

摘要

为了研究有害冷觉检测的细胞、分子和行为机制,我们开发了冷板行为分析方法以及评估主要的有害冷诱发收缩行为的定量方法。为了表征对有害冷的神经活动,我们实施了基于GCaMP6的钙成像分析,从而能够研究完整幼虫细胞内的钙动力学。我们将Ⅲ类多树突(md)感觉神经元鉴定为无害机械刺激和有害冷刺激的多模式传感器,并且为了剖析多模式感觉处理的机制基础,我们开发了两种独立的功能分析方法。第一,我们开发了一种光遗传学剂量反应分析,以评估神经激活水平是否有助于冷敏感觉神经元的多模式特性。第二,我们利用CaMPARI,一种光可切换钙整合剂,在细胞内钙水平高且有光转换光的情况下,它能将荧光从绿色稳定转换为红色,以评估无害机械刺激和有害冷刺激之间神经激活水平的功能差异。这些新颖的分析方法能够研究幼虫外周感觉神经元的行为和功能作用以及多模式感觉处理。

相似文献

2
Neural substrates of cold nociception in larva.
bioRxiv. 2025 Jan 27:2023.07.31.551339. doi: 10.1101/2023.07.31.551339.
6
Optogenetic Stimulation of Nociceptive Escape Behaviors in Larvae.
Cold Spring Harb Protoc. 2025 Apr 1;2025(4):pdb.prot108128. doi: 10.1101/pdb.prot108128.
7
Injury-induced cold sensitization in Drosophila larvae involves behavioral shifts that require the TRP channel Brv1.
PLoS One. 2018 Dec 26;13(12):e0209577. doi: 10.1371/journal.pone.0209577. eCollection 2018.
8
Novel Assay for Cold Nociception in Drosophila Larvae.
J Vis Exp. 2017 Apr 3(122):55568. doi: 10.3791/55568.
9
10
Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae.
Curr Biol. 2017 Aug 21;27(16):2499-2504.e3. doi: 10.1016/j.cub.2017.06.068. Epub 2017 Aug 10.

引用本文的文献

1
Neural substrates of cold nociception in larva.
Elife. 2025 Jun 13;12:RP91582. doi: 10.7554/eLife.91582.
2
An improved FLARE system for recording and manipulating neuronal activity.
Cell Rep Methods. 2025 Apr 21;5(4):101012. doi: 10.1016/j.crmeth.2025.101012. Epub 2025 Mar 21.
3
An improved FLARE system for recording and manipulating neuronal activity.
bioRxiv. 2025 Jan 18:2025.01.13.632875. doi: 10.1101/2025.01.13.632875.
5
Neural substrates of cold nociception in larva.
bioRxiv. 2025 Jan 27:2023.07.31.551339. doi: 10.1101/2023.07.31.551339.
6
Cross-modal modulation gates nociceptive inputs in Drosophila.
Curr Biol. 2023 Apr 10;33(7):1372-1380.e4. doi: 10.1016/j.cub.2023.02.032. Epub 2023 Mar 8.
9
Evaluating Baseline and Sensitised Heat Nociception in Adult .
Bio Protoc. 2021 Jul 5;11(13):e4079. doi: 10.21769/BioProtoc.4079.
10
Identification of a neural basis for cold acclimation in larvae.
iScience. 2021 May 28;24(6):102657. doi: 10.1016/j.isci.2021.102657. eCollection 2021 Jun 25.

本文引用的文献

2
Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.
Science. 2015 Feb 13;347(6223):755-60. doi: 10.1126/science.1260922.
3
The role of PPK26 in Drosophila larval mechanical nociception.
Cell Rep. 2014 Nov 20;9(4):1183-90. doi: 10.1016/j.celrep.2014.10.020.
5
Balboa binds to pickpocket in vivo and is required for mechanical nociception in Drosophila larvae.
Curr Biol. 2014 Dec 15;24(24):2920-5. doi: 10.1016/j.cub.2014.10.038. Epub 2014 Nov 26.
6
Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation.
Nature. 2013 Jan 10;493(7431):221-5. doi: 10.1038/nature11685. Epub 2012 Dec 9.
7
Dendritic filopodia, Ripped Pocket, NOMPC, and NMDARs contribute to the sense of touch in Drosophila larvae.
Curr Biol. 2012 Nov 20;22(22):2124-34. doi: 10.1016/j.cub.2012.09.019. Epub 2012 Oct 25.
8
Pokes, sunburn, and hot sauce: Drosophila as an emerging model for the biology of nociception.
Dev Dyn. 2012 Jan;241(1):16-26. doi: 10.1002/dvdy.22737. Epub 2011 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验