Suppr超能文献

用于发现肺癌血清学标志物并通过MRM-MS进行验证的整合分析

Integrative analysis for the discovery of lung cancer serological markers and validation by MRM-MS.

作者信息

Shin Jihye, Song Sang-Yun, Ahn Hee-Sung, An Byung Chull, Choi Yoo-Duk, Yang Eun Gyeong, Na Kook-Joo, Lee Seung-Taek, Park Jae-Il, Kim Seon-Young, Lee Cheolju, Lee Seung-Won

机构信息

Center for Theragnosis, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea.

Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-gu, Seoul, Korea.

出版信息

PLoS One. 2017 Aug 24;12(8):e0183896. doi: 10.1371/journal.pone.0183896. eCollection 2017.

Abstract

Non-small-cell lung cancer (NSCLC) constitutes approximately 80% of all diagnosed lung cancers, and diagnostic markers detectable in the plasma/serum of NSCLC patients are greatly needed. In this study, we established a pipeline for the discovery of markers using 9 transcriptome datasets from publicly available databases and profiling of six lung cancer cell secretomes. Thirty-one out of 312 proteins that overlapped between two-fold differentially expressed genes and identified cell secretome proteins were detected in the pooled plasma of lung cancer patients. To quantify the candidates in the serum of NSCLC patients, multiple-reaction-monitoring mass spectrometry (MRM-MS) was performed for five candidate biomarkers. Finally, two potential biomarkers (BCHE and GPx3; AUC = 0.713 and 0.673, respectively) and one two-marker panel generated by logistic regression (BCHE/GPx3; AUC = 0.773) were identified. A validation test was performed by ELISA to evaluate the reproducibility of GPx3 and BCHE expression in an independent set of samples (BCHE and GPx3; AUC = 0.630 and 0.759, respectively, BCHE/GPx3 panel; AUC = 0.788). Collectively, these results demonstrate the feasibility of using our pipeline for marker discovery and our MRM-MS platform for verifying potential biomarkers of human diseases.

摘要

非小细胞肺癌(NSCLC)约占所有确诊肺癌的80%,因此非常需要能够在NSCLC患者血浆/血清中检测到的诊断标志物。在本研究中,我们建立了一个流程,利用来自公开数据库的9个转录组数据集和6种肺癌细胞分泌蛋白质组分析来发现标志物。在肺癌患者的混合血浆中检测到了312种在两倍差异表达基因与鉴定出的细胞分泌蛋白质组蛋白之间重叠的蛋白质中的31种。为了定量NSCLC患者血清中的候选物,对5种候选生物标志物进行了多反应监测质谱(MRM-MS)分析。最后,鉴定出了两种潜在生物标志物(BCHE和GPx3;AUC分别为0.713和0.673)以及通过逻辑回归生成的一个双标志物组合(BCHE/GPx3;AUC = 0.773)。通过酶联免疫吸附测定(ELISA)进行了验证试验,以评估在一组独立样本中GPx3和BCHE表达情况的可重复性(BCHE和GPx3;AUC分别为0.630和0.759,BCHE/GPx3组合;AUC = 0.788)。总体而言,这些结果证明了使用我们的流程进行标志物发现以及使用我们的MRM-MS平台验证人类疾病潜在生物标志物的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c2e/5570484/e8dc1cc62ece/pone.0183896.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验