Suppr超能文献

基于尺寸的质量知情框架用于儿科CT的定量优化

Size-based quality-informed framework for quantitative optimization of pediatric CT.

作者信息

Samei Ehsan, Li Xiang, Frush Donald P

机构信息

Duke University Medical Center, Departments of Radiology, Physics, Biomedical Engineering, and Electrical and Computer Engineering, Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Durham, North Carolina, United States.

Cleveland Clinic, Imaging Institute, Section of Medical Physics, Cleveland, Ohio, United States.

出版信息

J Med Imaging (Bellingham). 2017 Jul;4(3):031209. doi: 10.1117/1.JMI.4.3.031209. Epub 2017 Aug 21.

Abstract

The purpose of this study was to formulate a systematic, evidence-based method to relate quantitative diagnostic performance to radiation dose, enabling a multidimensional system to optimize computed tomography imaging across pediatric populations. Based on two prior foundational studies, radiation dose was assessed in terms of organ doses, effective dose ([Formula: see text]), and risk index for 30 patients within nine color-coded pediatric age-size groups as a function of imaging parameters. The cases, supplemented with added noise and simulated lesions, were assessed in terms of nodule detection accuracy in an observer receiving operating characteristic study. The resulting continuous accuracy-dose relationships were used to optimize individual scan parameters. Before optimization, the nine protocols had a similar [Formula: see text] of [Formula: see text] with accuracy decreasing from 0.89 for the youngest patients to 0.67 for the oldest. After optimization, a consistent target accuracy of 0.83 was established for all patient categories with [Formula: see text] ranging from 1 to 10 mSv. Alternatively, isogradient operating points targeted a consistent ratio of accuracy-per-unit-dose across the patient categories. The developed model can be used to optimize individual scan parameters and provide for consistent diagnostic performance across the broad range of body sizes in children.

摘要

本研究的目的是制定一种系统的、基于证据的方法,将定量诊断性能与辐射剂量相关联,从而形成一个多维系统,以优化针对儿科人群的计算机断层扫描成像。基于两项先前的基础研究,根据九个颜色编码的儿科年龄 - 体型组中30名患者的器官剂量、有效剂量([公式:见正文])和风险指数,对辐射剂量进行了评估,作为成像参数的函数。在一项观察者操作特征研究中,对添加了噪声和模拟病变的病例进行了结节检测准确性评估。由此产生的连续准确性 - 剂量关系被用于优化个体扫描参数。在优化之前,这九个方案的[公式:见正文]相似,为[公式:见正文],准确性从最年幼患者的0.89降至最年长患者的0.67。优化后,为所有患者类别建立了一致的目标准确性0.83,有效剂量范围为1至10毫希沃特。或者,等梯度操作点针对各患者类别实现了一致的单位剂量准确性比率。所开发的模型可用于优化个体扫描参数,并在儿童广泛的体型范围内提供一致的诊断性能。

相似文献

1
Size-based quality-informed framework for quantitative optimization of pediatric CT.
J Med Imaging (Bellingham). 2017 Jul;4(3):031209. doi: 10.1117/1.JMI.4.3.031209. Epub 2017 Aug 21.
2
Estimability index for volume quantification of homogeneous spherical lesions in computed tomography.
J Med Imaging (Bellingham). 2018 Jul;5(3):031404. doi: 10.1117/1.JMI.5.3.031404. Epub 2017 Dec 11.
3
How accurate is size-specific dose estimate in pediatric body CT examinations?
Pediatr Radiol. 2016 Aug;46(9):1234-40. doi: 10.1007/s00247-016-3604-0. Epub 2016 Apr 6.
4
Automatic CT simulation optimization for radiation therapy: A general strategy.
Med Phys. 2014 Mar;41(3):031913. doi: 10.1118/1.4866377.
5
Weight-based, low-dose pediatric whole-body PET/CT protocols.
J Nucl Med. 2009 Oct;50(10):1570-7. doi: 10.2967/jnumed.109.065912.
6
Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.
J Med Imaging (Bellingham). 2015 Oct;2(4):043504. doi: 10.1117/1.JMI.2.4.043504. Epub 2015 Nov 6.
7
Correlation between human detection accuracy and observer model-based image quality metrics in computed tomography.
J Med Imaging (Bellingham). 2016 Jul;3(3):035506. doi: 10.1117/1.JMI.3.3.035506. Epub 2016 Sep 22.
8
Size-specific optimization of CT protocols based on minimum detectability.
Med Phys. 2017 Apr;44(4):1301-1311. doi: 10.1002/mp.12125.
9
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.
10
Does preference influence performance when reading different sizes of cranial computed tomography?
J Med Imaging (Bellingham). 2014 Oct;1(3):035503. doi: 10.1117/1.JMI.1.3.035503. Epub 2014 Dec 22.

引用本文的文献

1
Detection of unwarranted CT radiation exposure from patient and imaging protocol meta-data using regularized regression.
Eur J Radiol Open. 2019 Jun 5;6:206-211. doi: 10.1016/j.ejro.2019.04.007. eCollection 2019.

本文引用的文献

1
Radiation risk index for pediatric CT: a patient-derived metric.
Pediatr Radiol. 2017 Dec;47(13):1737-1744. doi: 10.1007/s00247-017-3973-z. Epub 2017 Aug 30.
2
Radiation dose from multidetector CT studies in children: results from the first Italian nationwide survey.
Pediatr Radiol. 2015 Apr;45(5):695-705. doi: 10.1007/s00247-014-3201-z. Epub 2014 Nov 8.
3
Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.
Pediatr Radiol. 2014 Oct;44 Suppl 3:501-5. doi: 10.1007/s00247-014-3077-y. Epub 2014 Oct 11.
4
Developing patient-specific dose protocols for a CT scanner and exam using diagnostic reference levels.
Pediatr Radiol. 2014 Oct;44 Suppl 3:479-88. doi: 10.1007/s00247-014-3088-8. Epub 2014 Jul 19.
5
ESR statement on radiation protection: globalisation, personalised medicine and safety (the GPS approach).
Insights Imaging. 2013 Dec;4(6):737-9. doi: 10.1007/s13244-013-0287-z. Epub 2013 Oct 3.
6
Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT.
Radiology. 2014 Feb;270(2):526-34. doi: 10.1148/radiol.13130362. Epub 2013 Oct 29.
8
System for verifiable CT radiation dose optimization based on image quality. part I. Optimization model.
Radiology. 2013 Oct;269(1):167-76. doi: 10.1148/radiol.13122320. Epub 2013 Jun 19.
9
System for verifiable CT radiation dose optimization based on image quality. part II. process control system.
Radiology. 2013 Oct;269(1):177-85. doi: 10.1148/radiol.13122321. Epub 2013 Jun 19.
10
Relating noise to image quality indicators in CT examinations with tube current modulation.
AJR Am J Roentgenol. 2013 Mar;200(3):592-600. doi: 10.2214/AJR.12.8580.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验