Suppr超能文献

整合自我量化感知与社交媒体的计算方法

Computational Approaches Toward Integrating Quantified Self Sensing and Social Media.

作者信息

De Choudhury Munmun, Kumar Mrinal, Weber Ingmar

机构信息

Georgia Institute of Technology, Atlanta, GA 30332 USA,

Qatar Computing Research Institute, HBKU, Doha, Qatar,

出版信息

CSCW Conf Comput Support Coop Work. 2017 Feb-Mar;2017:1334-1349. doi: 10.1145/2998181.2998219.

Abstract

The growing amount of data collected by quantified self tools and social media hold great potential for applications in personalized medicine. Whereas the first includes health-related physiological signals, the latter provides insights into a user's behavior. However, the two sources of data have largely been studied in isolation. We analyze public data from users who have chosen to connect their MyFitnessPal and Twitter accounts. We show that a user's diet compliance success, measured via their self-logged food diaries, can be predicted using features derived from social media: linguistic, activity, and social capital. We find that users with more positive affect and a larger social network are more successful in succeeding in their dietary goals. Using a Granger causality methodology, we also show that social media can help predict daily changes in diet compliance success or failure with an accuracy of 77%, that improves over baseline techniques by 17%. We discuss the implications of our work in the design of improved health interventions for behavior change.

摘要

可量化自我工具和社交媒体收集的大量数据在个性化医疗应用方面具有巨大潜力。前者包含与健康相关的生理信号,后者则能洞察用户行为。然而,这两类数据源在很大程度上一直是分开研究的。我们分析了选择将MyFitnessPal和Twitter账户关联起来的用户的公开数据。我们发现,通过用户自己记录的饮食日记衡量的饮食依从性成功情况,可以利用从社交媒体衍生出的特征进行预测:语言、活动和社会资本。我们发现,具有更积极情绪和更大社交网络的用户在实现饮食目标方面更成功。使用格兰杰因果关系方法,我们还表明,社交媒体能够以77%的准确率帮助预测饮食依从性成功或失败的每日变化,这比基线技术提高了17%。我们讨论了我们的工作在设计改进的行为改变健康干预措施方面的意义。

相似文献

1
Computational Approaches Toward Integrating Quantified Self Sensing and Social Media.整合自我量化感知与社交媒体的计算方法
CSCW Conf Comput Support Coop Work. 2017 Feb-Mar;2017:1334-1349. doi: 10.1145/2998181.2998219.
4
Twitter as a Tool for Health Research: A Systematic Review.推特作为健康研究工具:一项系统综述
Am J Public Health. 2017 Jan;107(1):e1-e8. doi: 10.2105/AJPH.2016.303512. Epub 2016 Nov 17.
5
Social media and flu: Media Twitter accounts as agenda setters.社交媒体与流感:作为议程设置者的媒体推特账号
Int J Med Inform. 2016 Jul;91:67-73. doi: 10.1016/j.ijmedinf.2016.04.009. Epub 2016 Apr 22.

本文引用的文献

2
Barriers and Negative Nudges: Exploring Challenges in Food Journaling.障碍与负面助推:探索饮食记录中的挑战
Proc SIGCHI Conf Hum Factor Comput Syst. 2015 Apr;2015:1159-1162. doi: 10.1145/2702123.2702155.
7
Predicting therapeutic weight loss.预测治疗性体重减轻。
Am J Clin Nutr. 2015 Mar;101(3):419-20. doi: 10.3945/ajcn.114.106195. Epub 2015 Jan 28.
8
A new initiative on precision medicine.一项关于精准医学的新倡议。
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.
10
Early prediction of failure to lose weight after obesity surgery.肥胖症手术后体重减轻失败的早期预测。
Surg Obes Relat Dis. 2013 Jan-Feb;9(1):118-21. doi: 10.1016/j.soard.2011.10.022. Epub 2011 Nov 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验