Suppr超能文献

使用压缩支架对成年小鼠骨髓基质细胞进行牙本质样分化的机械诱导

Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds.

作者信息

Hashmi Basma, Mammoto Tadanori, Weaver James, Ferrante Thomas, Jiang Amanda, Jiang Elisabeth, Feliz Juani, Ingber Donald E

机构信息

Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.

出版信息

Stem Cell Res. 2017 Oct;24:55-60. doi: 10.1016/j.scr.2017.08.011. Epub 2017 Aug 17.

Abstract

Tooth formation during embryogenesis is controlled through a complex interplay between mechanical and chemical cues. We have previously shown that physical cell compaction of dental mesenchyme cells during mesenchymal condensation is responsible for triggering odontogenic differentiation during embryogenesis, and that expression of Collagen VI stabilizes this induction. In addition, we have shown that synthetic polymer scaffolds that artificially induce cell compaction can induce embryonic mandible mesenchymal cells to initiate tooth differentiation both in vitro and in vivo. As embryonic cells would be difficult to use for regenerative medicine applications, here we explored whether compressive scaffolds coated with Collagen VI can be used to induce adult bone marrow stromal cells (BMSCs) to undergo an odontogenic lineage switch. These studies revealed that when mouse BMSCs are compressed using these scaffolds they increase expression of critical markers of tooth differentiation in vitro, including the key transcription factors Pax9 and Msx1. Implantation under the kidney capsule of contracting scaffolds bearing these cells in mice also resulted in local mineralization, calcification and production of dentin-like tissue. These findings show that these chemically-primed compressive scaffolds can be used to induce adult BMSCs to undergo a lineage switch and begin to form dentin-like tissue, thus raising the possibility of using adult BMSCs for future tooth regeneration applications.

摘要

胚胎发育过程中的牙齿形成是通过机械信号和化学信号之间复杂的相互作用来控制的。我们之前已经表明,间充质凝聚过程中牙间充质细胞的物理性细胞压实负责在胚胎发育过程中触发牙源性分化,并且胶原蛋白VI的表达稳定了这种诱导作用。此外,我们还表明,人工诱导细胞压实的合成聚合物支架能够在体外和体内诱导胚胎下颌间充质细胞启动牙齿分化。由于胚胎细胞难以用于再生医学应用,因此我们在此探讨了涂有胶原蛋白VI的压缩支架是否可用于诱导成年骨髓基质细胞(BMSC)发生牙源性谱系转换。这些研究表明,当使用这些支架对小鼠BMSC进行压缩时,它们会在体外增加牙齿分化关键标志物的表达,包括关键转录因子Pax9和Msx1。将携带这些细胞的收缩支架植入小鼠肾囊下也会导致局部矿化、钙化以及牙本质样组织的产生。这些发现表明,这些化学预处理的压缩支架可用于诱导成年BMSC发生谱系转换并开始形成牙本质样组织,从而增加了将成年BMSC用于未来牙齿再生应用的可能性。

相似文献

1
Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds.
Stem Cell Res. 2017 Oct;24:55-60. doi: 10.1016/j.scr.2017.08.011. Epub 2017 Aug 17.
8
Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis.
Biomaterials. 2014 Nov;35(35):9459-72. doi: 10.1016/j.biomaterials.2014.08.003. Epub 2014 Aug 27.
9
Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells.
Cells Tissues Organs. 2008;187(2):103-12. doi: 10.1159/000110079. Epub 2007 Oct 23.
10
Msx1 regulates proliferation and differentiation of mouse dental mesenchymal cells in culture.
Eur J Oral Sci. 2013 Oct;121(5):412-20. doi: 10.1111/eos.12078. Epub 2013 Sep 3.

引用本文的文献

1
Dental Pulp Stem Cell Polarization: Effects of Biophysical Factors.
J Dent Res. 2021 Sep;100(10):1153-1160. doi: 10.1177/00220345211028850. Epub 2021 Jul 30.
3
An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding.
Polymers (Basel). 2020 Mar 5;12(3):583. doi: 10.3390/polym12030583.
5
"Microgravity" as a unique and useful stem cell culture environment for cell-based therapy.
Regen Ther. 2019 Apr 22;12:2-5. doi: 10.1016/j.reth.2019.03.001. eCollection 2019 Dec 15.
6
The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review.
Prog Biomater. 2018 Dec;7(4):249-268. doi: 10.1007/s40204-018-0100-7. Epub 2018 Sep 28.
7
From mechanobiology to developmentally inspired engineering.
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 24;373(1759):20170323. doi: 10.1098/rstb.2017.0323.
8
Hematopoietic Stem Cells as a Novel Source of Dental Tissue Cells.
Sci Rep. 2018 May 23;8(1):8026. doi: 10.1038/s41598-018-26258-y.

本文引用的文献

1
Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation.
Sci Rep. 2017 Mar 22;7(1):300. doi: 10.1038/s41598-017-00339-w.
2
Tissue Interactions Regulating Tooth Development and Renewal.
Curr Top Dev Biol. 2015;115:157-86. doi: 10.1016/bs.ctdb.2015.07.006. Epub 2015 Oct 6.
5
Developmentally-inspired shrink-wrap polymers for mechanical induction of tissue differentiation.
Adv Mater. 2014 May 28;26(20):3253-7. doi: 10.1002/adma.201304995. Epub 2014 Feb 18.
7
Mechanobiology and developmental control.
Annu Rev Cell Dev Biol. 2013;29:27-61. doi: 10.1146/annurev-cellbio-101512-122340.
8
Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle.
Dev Biol. 2012 Jun 15;366(2):244-54. doi: 10.1016/j.ydbio.2012.03.018. Epub 2012 Apr 20.
9
Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation.
Dev Cell. 2011 Oct 18;21(4):758-69. doi: 10.1016/j.devcel.2011.07.006. Epub 2011 Sep 15.
10
Mechanical control of tissue and organ development.
Development. 2010 May;137(9):1407-20. doi: 10.1242/dev.024166.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验