Suppr超能文献

基于地震心动图的心脏计算机断层扫描门控技术,采用患者特异性模板识别与检测

Seismocardiography-Based Cardiac Computed Tomography Gating Using Patient-Specific Template Identification and Detection.

作者信息

Yao Jingting, Tridandapani Srini, Wick Carson A, Bhatti Pamela T

机构信息

School of Electrical and Computer EngineeringGeorgia Institute of Technology.

Department of Radiology and Imaging SciencesEmory University.

出版信息

IEEE J Transl Eng Health Med. 2017 Jul 7;5:1900314. doi: 10.1109/JTEHM.2017.2708100. eCollection 2017.

Abstract

To more accurately trigger cardiac computed tomography angiography (CTA) than electrocardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA, which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired from seven healthy subjects (mean age: 31; age range: 22-48; males: 4) and 11 cardiac patients (mean age: 56; age range: 31-78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework of a comprehensive system with multiple modalities that could potentially, in real time, improve the image quality of CTA.

摘要

为了比单独使用心电图(ECG)更准确地触发心脏计算机断层扫描血管造影(CTA),提出了一个子系统,作为将ECG与心震图(SCG)融合的中间步骤。准确预测静息期对于前瞻性门控CTA至关重要,因为CTA易受心脏运动影响,从而可能影响图像的诊断质量。该子系统的关键创新之处在于,它能识别与心音对应的SCG波形,并确定它们在心动周期内的相位。此外,这种关系被建模为关于心率的线性函数。在本文中,B型超声心动图被用作识别静息期的金标准。我们分析了从7名健康受试者(平均年龄:31岁;年龄范围:22 - 48岁;男性:4名)和11名心脏病患者(平均年龄:56岁;年龄范围:31 - 78岁;男性:6名)获取的同步ECG、SCG和超声心动图数据。平均而言,所提出的算法能够成功识别收缩期79%的SCG波形和舒张期68%的SCG波形。模拟结果表明,基于SCG的预测产生的平均相位误差比基于ECG的预测要小。研究发现,基于ECG的门控准确性更容易受到心率变异性增加的影响,而基于SCG的门控则容易受到形态学上高周期到周期变异性的影响。这项使用SCG波形进行预测的初步工作丰富了一个多模态综合系统的框架,该系统有可能实时提高CTA的图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验