Suppr超能文献

一种用于心脏CTA的自适应SCG-ECG多模态门控框架

An Adaptive SCG-ECG Multimodal Gating Framework for Cardiac CTA.

作者信息

Ganesh Shambavi, Abozeed Mostafa, Aziz Usman, Tridandapani Srini, Bhatti Pamela T

机构信息

Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1669-1680. doi: 10.1007/s10278-024-01289-2. Epub 2024 Oct 15.

Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide. Coronary artery disease (CAD), a prevalent form of CVD, is typically assessed using catheter coronary angiography (CCA), an invasive, costly procedure with associated risks. While cardiac computed tomography angiography (CTA) presents a less invasive alternative, it suffers from limited temporal resolution, often resulting in motion artifacts that degrade diagnostic quality. Traditional ECG-based gating methods for CTA inadequately capture cardiac mechanical motion. To address this, we propose a novel multimodal approach that enhances CTA imaging by predicting cardiac quiescent periods using seismocardiogram (SCG) and ECG data, integrated through a weighted fusion (WF) approach and artificial neural networks (ANNs). We developed a regression-based ANN framework (r-ANN WF) designed to improve prediction accuracy and reduce computational complexity, which was compared with a classification-based framework (c-ANN WF), ECG gating, and US data. Our results demonstrate that the r-ANN WF approach improved overall diastolic and systolic cardiac quiescence prediction accuracy by 52.6% compared to ECG-based predictions, using ultrasound (US) as the ground truth, with an average prediction time of 4.83 ms. Comparative evaluations based on reconstructed CTA images show that both r-ANN WF and c-ANN WF offer diagnostic quality comparable to US-based gating, underscoring their clinical potential. Additionally, the lower computational complexity of r-ANN WF makes it suitable for real-time applications. This approach could enhance CTA's diagnostic quality, offering a more accurate and efficient method for CVD diagnosis and management.

摘要

心血管疾病(CVD)是全球主要的死亡原因。冠状动脉疾病(CAD)是CVD的一种常见形式,通常使用导管冠状动脉造影(CCA)进行评估,这是一种侵入性、成本高且有相关风险的检查。虽然心脏计算机断层扫描血管造影(CTA)提供了一种侵入性较小的替代方法,但它的时间分辨率有限,常常导致运动伪影,从而降低诊断质量。传统的基于心电图的CTA门控方法无法充分捕捉心脏机械运动。为了解决这个问题,我们提出了一种新颖的多模态方法,通过使用心震图(SCG)和心电图数据预测心脏静止期来增强CTA成像,并通过加权融合(WF)方法和人工神经网络(ANN)进行整合。我们开发了一个基于回归的ANN框架(r-ANN WF),旨在提高预测准确性并降低计算复杂度,并将其与基于分类的框架(c-ANN WF)、心电图门控和超声数据进行了比较。我们的结果表明,与基于心电图的预测相比,r-ANN WF方法使用超声(US)作为参考标准,将心脏舒张期和收缩期静止期的总体预测准确性提高了52.6%,平均预测时间为4.83毫秒。基于重建CTA图像的比较评估表明,r-ANN WF和c-ANN WF提供的诊断质量与基于US的门控相当,凸显了它们在临床上的潜力。此外,r-ANN WF较低的计算复杂度使其适用于实时应用。这种方法可以提高CTA的诊断质量,为CVD的诊断和管理提供一种更准确、高效的方法。

相似文献

1
An Adaptive SCG-ECG Multimodal Gating Framework for Cardiac CTA.一种用于心脏CTA的自适应SCG-ECG多模态门控框架
J Imaging Inform Med. 2025 Jun;38(3):1669-1680. doi: 10.1007/s10278-024-01289-2. Epub 2024 Oct 15.
3
Seismocardiography-Based Detection of Cardiac Quiescence.基于心震图的心脏静止检测
IEEE Trans Biomed Eng. 2015 Aug;62(8):2025-32. doi: 10.1109/TBME.2015.2411155. Epub 2015 Mar 6.

引用本文的文献

1
Heart rate informed detection of cardiac events using the Kalman filter.使用卡尔曼滤波器进行心率辅助的心脏事件检测。
Comput Biol Med. 2025 Sep;195:110480. doi: 10.1016/j.compbiomed.2025.110480. Epub 2025 Jun 19.

本文引用的文献

1
Recent Advances in Seismocardiography.地震心图学的最新进展
Vibration. 2019 Mar;2(1):64-86. doi: 10.3390/vibration2010005. Epub 2019 Jan 14.
9
Echocardiography as an indication of continuous-time cardiac quiescence.超声心动图作为连续心脏静止的指标。
Phys Med Biol. 2016 Jul 21;61(14):5297-310. doi: 10.1088/0031-9155/61/14/5297. Epub 2016 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验