Department of Chemical and Biomolecular Engineering, University of Notre Dame , 182 Fitzpatrick Hall, Notre Dame, Indiana 46556-5637, United States.
Corporate Strategic Research, ExxonMobil Research and Engineering Company , 1545 U.S. 22, Annandale, New Jersey 08801, United States.
Langmuir. 2017 Sep 26;33(38):9793-9802. doi: 10.1021/acs.langmuir.7b02058. Epub 2017 Sep 15.
We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants CE between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.
我们提出了一种新的蒙特卡罗方案,用于预测各种表面活性剂界面覆盖率下的体相表面活性剂浓度和空气-水界面的表面张力。由于这些感兴趣的体系的浓度范围通常非常低(≪10 mol. frac.),因此使用插入/删除移动的蒙特卡罗模拟可以提供克服有限体系尺寸限制的能力,这些限制通常禁止使用现代分子模拟技术。在进行这些模拟时,我们在吉布斯系综框架中使用离散分数组分蒙特卡罗(DFCMC)方法,这允许我们将体相和空气-水界面分离到两个单独的盒子中,并有效地在盒子之间交换四乙二醇表面活性剂 CE。将这种移动与优先平移、体积有偏插入和 Wang-Landau 偏置相结合,极大地增强了采样,并有助于克服非晶格蒙特卡罗模拟中经常遇到的经典“插入问题”。我们证明,这种方法既符合 Blankchtein 及其同事的原始分子热力学理论(MTT),也符合他们最近修改的理论(MD/MTT),该理论结合了从分子动力学模拟获得的表面活性剂无限稀释传递自由能和表面张力计算的结果。