Suppr超能文献

计算膜生物物理学:从离子通道与药物的相互作用到细胞功能。

Computational membrane biophysics: From ion channel interactions with drugs to cellular function.

机构信息

Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.

Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.

出版信息

Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1643-1653. doi: 10.1016/j.bbapap.2017.08.008. Epub 2017 Aug 26.

Abstract

The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.

摘要

实验和计算技术的快速发展从根本上改变了我们对细胞膜运输的理解。强大的计算机和改进的蛋白质、离子和脂质力场的出现扩展了分子动力学 (MD) 模拟的适用性。通过内源性和外源性配体(分别为神经递质和药物)与离子通道的结合,调节了无数的细胞反应。解析这些膜蛋白配体结合过程的热力学和动力学是现代药物开发的核心。不断增加的计算能力已经为药物靶标相互作用、溶剂化自由能以及药物进入脂质双层的分配的热力学和动力学提供了有见地的数据。本文旨在简要总结建模方法,以描绘与药物-离子通道结合机制相关的关键结合途径和自由能表面,该机制负责对细胞功能的多种影响。我们将讨论模拟生成数据的后处理分析,然后将其转换为动力学模型,以更好地了解在药物或离子通道突变的影响下实验观测值的分子基础。本文重点介绍了将不同成熟的计算技术联系起来的关键数学框架和观点,以连接从离子通道的全原子 MD 和自由能模拟到细胞模型中的动作电位生理学的动力学和时间尺度。本文是由 Lewis Kay、John Baenziger、Albert Berghuis 和 Peter Tieleman 编辑的特刊:加拿大生物物理学的一部分。

相似文献

1
Computational membrane biophysics: From ion channel interactions with drugs to cellular function.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1643-1653. doi: 10.1016/j.bbapap.2017.08.008. Epub 2017 Aug 26.
2
Insights into the function of ion channels by computational electrophysiology simulations.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1741-52. doi: 10.1016/j.bbamem.2016.02.006. Epub 2016 Feb 10.
3
Simulations of outer membrane channels and their permeability.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1760-71. doi: 10.1016/j.bbamem.2015.12.020. Epub 2015 Dec 23.
4
Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):909-926. doi: 10.1016/j.bbamem.2017.10.033. Epub 2017 Nov 4.
5
Molecular modeling and simulation studies of ion channel structures, dynamics and mechanisms.
Methods Cell Biol. 2008;90:233-65. doi: 10.1016/S0091-679X(08)00812-1.
6
G-quadruplex dynamics.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1544-1554. doi: 10.1016/j.bbapap.2017.06.012. Epub 2017 Jun 20.
7
Computational studies of transport in ion channels using metadynamics.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1733-40. doi: 10.1016/j.bbamem.2016.02.015. Epub 2016 Feb 15.
8
Applications of solid-state NMR to membrane proteins.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1577-1586. doi: 10.1016/j.bbapap.2017.07.004. Epub 2017 Jul 12.
9
Membrane solid-state NMR in Canada: A historical perspective.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1483-1489. doi: 10.1016/j.bbapap.2017.06.019. Epub 2017 Jun 23.

引用本文的文献

1
Alchemical Free Energy Calculations on Membrane-Associated Proteins.
J Chem Theory Comput. 2023 Nov 14;19(21):7437-7458. doi: 10.1021/acs.jctc.3c00365. Epub 2023 Oct 30.
2
Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening.
Molecules. 2022 Dec 25;28(1):175. doi: 10.3390/molecules28010175.
3
Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design.
Pharmaceuticals (Basel). 2021 Oct 19;14(10):1062. doi: 10.3390/ph14101062.
4
Multiparametric biophysical profiling of red blood cells in malaria infection.
Commun Biol. 2021 Jun 8;4(1):697. doi: 10.1038/s42003-021-02181-3.
5
Biophysical Psychiatry-How Computational Neuroscience Can Help to Understand the Complex Mechanisms of Mental Disorders.
Front Psychiatry. 2019 Aug 6;10:534. doi: 10.3389/fpsyt.2019.00534. eCollection 2019.
6
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications.
Int J Mol Sci. 2019 Aug 1;20(15):3774. doi: 10.3390/ijms20153774.
7
Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):927-942. doi: 10.1016/j.bbamem.2017.12.013. Epub 2017 Dec 16.

本文引用的文献

1
Role of the Ion Channel Extracellular Collar in AMPA Receptor Gating.
Sci Rep. 2017 Apr 21;7(1):1050. doi: 10.1038/s41598-017-01146-z.
2
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software.
Annu Rev Biophys. 2017 May 22;46:43-57. doi: 10.1146/annurev-biophys-070816-033834. Epub 2017 Mar 1.
3
Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.
J Biol Chem. 2017 Apr 14;292(15):6135-6147. doi: 10.1074/jbc.M116.753350. Epub 2017 Feb 17.
4
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1857-E1865. doi: 10.1073/pnas.1700453114. Epub 2017 Feb 15.
5
Advances in the field of single-particle cryo-electron microscopy over the last decade.
Nat Protoc. 2017 Feb;12(2):209-212. doi: 10.1038/nprot.2017.004. Epub 2017 Jan 5.
6
Molecular Simulations Identify Binding Poses and Approximate Affinities of Stapled α-Helical Peptides to MDM2 and MDMX.
J Chem Theory Comput. 2017 Feb 14;13(2):863-869. doi: 10.1021/acs.jctc.6b00978. Epub 2017 Jan 19.
8
Potassium channels in the heart: structure, function and regulation.
J Physiol. 2017 Apr 1;595(7):2209-2228. doi: 10.1113/JP272864. Epub 2016 Nov 13.
9
Structural Bases of Noncompetitive Inhibition of AMPA-Subtype Ionotropic Glutamate Receptors by Antiepileptic Drugs.
Neuron. 2016 Sep 21;91(6):1305-1315. doi: 10.1016/j.neuron.2016.08.012. Epub 2016 Sep 8.
10
Binding Kinetics in Drug Discovery.
Mol Inform. 2016 Jul;35(6-7):216-26. doi: 10.1002/minf.201501018. Epub 2016 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验