Suppr超能文献

计算离子通道研究:从人工智能的应用到分子动力学模拟。

Computational Ion Channel Research: from the Application of Artificial Intelligence to Molecular Dynamics Simulations.

机构信息

Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany.

Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany,

出版信息

Cell Physiol Biochem. 2021 Mar 3;55(S3):14-45. doi: 10.33594/000000336.

Abstract

Although ion channels are crucial in many physiological processes and constitute an important class of drug targets, much is still unclear about their function and possible malfunctions that lead to diseases. In recent years, computational methods have evolved into important and invaluable approaches for studying ion channels and their functions. This is mainly due to their demanding mechanism of action where a static picture of an ion channel structure is often insufficient to fully understand the underlying mechanism. Therefore, the use of computational methods is as important as chemical-biological based experimental methods for a better understanding of ion channels. This review provides an overview on a variety of computational methods and software specific to the field of ion-channels. Artificial intelligence (or more precisely machine learning) approaches are applied for the sequence-based prediction of ion channel family, or topology of the transmembrane region. In case sufficient data on ion channel modulators is available, these methods can also be applied for quantitative structureactivity relationship (QSAR) analysis. Molecular dynamics (MD) simulations combined with computational molecular design methods such as docking can be used for analysing the function of ion channels including ion conductance, different conformational states, binding sites and ligand interactions, and the influence of mutations on their function. In the absence of a three-dimensional protein structure, homology modelling can be applied to create a model of your ion channel structure of interest. Besides highlighting a wide range of successful applications, we will also provide a basic introduction to the most important computational methods and discuss best practices to get a rough idea of possible applications and risks.

摘要

虽然离子通道在许多生理过程中至关重要,并且构成了一类重要的药物靶标,但它们的功能和可能导致疾病的功能障碍仍有许多未解之处。近年来,计算方法已发展成为研究离子通道及其功能的重要且不可或缺的方法。这主要是由于它们作用机制的复杂性,静态的离子通道结构图片通常不足以完全理解其潜在的机制。因此,为了更好地了解离子通道,计算方法与基于化学-生物学的实验方法同样重要。

本文综述了各种特定于离子通道领域的计算方法和软件。人工智能(或更确切地说是机器学习)方法可用于基于序列预测离子通道家族或跨膜区域的拓扑结构。如果有足够的离子通道调节剂数据,这些方法也可用于定量构效关系(QSAR)分析。将分子动力学(MD)模拟与计算分子设计方法(如对接)相结合,可用于分析离子通道的功能,包括离子导通性、不同构象状态、结合位点和配体相互作用,以及突变对其功能的影响。在没有三维蛋白质结构的情况下,可以应用同源建模来创建您感兴趣的离子通道结构模型。

除了突出显示广泛的成功应用外,我们还将对最重要的计算方法进行基本介绍,并讨论最佳实践,以大致了解可能的应用和风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验