Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):927-942. doi: 10.1016/j.bbamem.2017.12.013. Epub 2017 Dec 16.
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
离子跨生物屏障转运是生命的基本要求。在许多情况下,控制这一过程——例如使用神经活性药物——需要了解膜嵌入蛋白(包括离子通道和转运蛋白)的快速和可逆结构变化。经典的电生理学和结构生物学方法为几种这样的蛋白质提供了有价值的见解,这些蛋白质跨越宏观、通常不连续的时空尺度。将这些观察结果整合到有意义的机械模型中现在越来越依赖于计算方法,特别是分子动力学模拟,同时在数据管理和概念对齐方面也暴露出了重要的挑战。在这里,我们试图为弥合生物离子转运领域的学科差距提供当代背景、具体实例和未来展望。本文是由 Ute Hellmich、Rupak Doshi 和 Benjamin McIlwain 编辑的题为“超越膜蛋白的结构-功能范围”的特刊的一部分。