Suppr超能文献

渗透学科:克服生物离子输运中分子模拟和经典结构-功能方法之间的障碍。

Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.

机构信息

Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.

Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.

出版信息

Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):927-942. doi: 10.1016/j.bbamem.2017.12.013. Epub 2017 Dec 16.

Abstract

Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.

摘要

离子跨生物屏障转运是生命的基本要求。在许多情况下,控制这一过程——例如使用神经活性药物——需要了解膜嵌入蛋白(包括离子通道和转运蛋白)的快速和可逆结构变化。经典的电生理学和结构生物学方法为几种这样的蛋白质提供了有价值的见解,这些蛋白质跨越宏观、通常不连续的时空尺度。将这些观察结果整合到有意义的机械模型中现在越来越依赖于计算方法,特别是分子动力学模拟,同时在数据管理和概念对齐方面也暴露出了重要的挑战。在这里,我们试图为弥合生物离子转运领域的学科差距提供当代背景、具体实例和未来展望。本文是由 Ute Hellmich、Rupak Doshi 和 Benjamin McIlwain 编辑的题为“超越膜蛋白的结构-功能范围”的特刊的一部分。

相似文献

1
Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):927-942. doi: 10.1016/j.bbamem.2017.12.013. Epub 2017 Dec 16.
2
Membrane transporter research in times of countless structures.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):804-808. doi: 10.1016/j.bbamem.2017.08.009. Epub 2017 Aug 31.
3
Insights into the function of ion channels by computational electrophysiology simulations.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1741-52. doi: 10.1016/j.bbamem.2016.02.006. Epub 2016 Feb 10.
4
Comparison of mechanistic transport cycle models of ABC exporters.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):818-832. doi: 10.1016/j.bbamem.2017.10.028. Epub 2017 Oct 31.
5
Computational studies of transport in ion channels using metadynamics.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1733-40. doi: 10.1016/j.bbamem.2016.02.015. Epub 2016 Feb 15.
6
Molecular dynamics simulations of membrane channels and transporters.
Curr Opin Struct Biol. 2009 Apr;19(2):128-37. doi: 10.1016/j.sbi.2009.02.011. Epub 2009 Apr 1.
7
Simulations of outer membrane channels and their permeability.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1760-71. doi: 10.1016/j.bbamem.2015.12.020. Epub 2015 Dec 23.
8
Functional validation of Ca-binding residues from the crystal structure of the BK ion channel.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):943-952. doi: 10.1016/j.bbamem.2017.09.023. Epub 2017 Sep 29.
10
Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation.
Chem Rev. 2019 Jul 10;119(13):7737-7832. doi: 10.1021/acs.chemrev.8b00630. Epub 2019 Jun 27.

引用本文的文献

1
Photopharmacology of Ion Channels through the Light of the Computational Microscope.
Int J Mol Sci. 2021 Nov 8;22(21):12072. doi: 10.3390/ijms222112072.
2
Molecular dynamics: a powerful tool for studying the medicinal chemistry of ion channel modulators.
RSC Med Chem. 2021 Jul 22;12(9):1503-1518. doi: 10.1039/d1md00140j. eCollection 2021 Sep 23.
3
Tracking Membrane Protein Dynamics in Real Time.
J Membr Biol. 2021 Feb;254(1):51-64. doi: 10.1007/s00232-020-00165-8. Epub 2021 Jan 7.
4
Roles for Countercharge in the Voltage Sensor Domain of Ion Channels.
Front Pharmacol. 2020 Feb 28;11:160. doi: 10.3389/fphar.2020.00160. eCollection 2020.
5
The Structural Basis of IKs Ion-Channel Activation: Mechanistic Insights from Molecular Simulations.
Biophys J. 2018 Jun 5;114(11):2584-2594. doi: 10.1016/j.bpj.2018.04.023.

本文引用的文献

1
Unfolding Hidden Barriers by Active Enhanced Sampling.
Phys Rev Lett. 2018 Jul 6;121(1):010601. doi: 10.1103/PhysRevLett.121.010601.
2
Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations.
Biochim Biophys Acta Biomembr. 2018 Apr;1860(4):909-926. doi: 10.1016/j.bbamem.2017.10.033. Epub 2017 Nov 4.
3
Computational membrane biophysics: From ion channel interactions with drugs to cellular function.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1643-1653. doi: 10.1016/j.bbapap.2017.08.008. Epub 2017 Aug 26.
4
Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
Methods Enzymol. 2017;594:1-30. doi: 10.1016/bs.mie.2017.05.007. Epub 2017 Jul 19.
5
Supramolecular Organization and Functional Implications of K  Channel Clusters in Membranes.
Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13222-13227. doi: 10.1002/anie.201705723. Epub 2017 Aug 9.
6
Single-molecule FRET studies of ion channels.
Prog Biophys Mol Biol. 2017 Nov;130(Pt B):192-197. doi: 10.1016/j.pbiomolbio.2017.06.014. Epub 2017 Jun 23.
7
Intrinsic map dynamics exploration for uncharted effective free-energy landscapes.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5494-E5503. doi: 10.1073/pnas.1621481114. Epub 2017 Jun 20.
8
Applications of NMR to membrane proteins.
Arch Biochem Biophys. 2017 Aug 15;628:92-101. doi: 10.1016/j.abb.2017.05.011. Epub 2017 May 18.
9
GABA Receptors and the Diversity in their Structure and Pharmacology.
Adv Pharmacol. 2017;79:1-34. doi: 10.1016/bs.apha.2017.03.003. Epub 2017 May 2.
10
Helical jackknives control the gates of the double-pore K uptake system KtrAB.
Elife. 2017 May 16;6:e24303. doi: 10.7554/eLife.24303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验