Hervé Mylène, Bergon Aurélie, Le Guisquet Anne-Marie, Leman Samuel, Consoloni Julia-Lou, Fernandez-Nunez Nicolas, Lefebvre Marie-Noëlle, El-Hage Wissam, Belzeaux Raoul, Belzung Catherine, Ibrahim El Chérif
Aix Marseille Univ, CNRS, CRN2M UMR 7286Marseille, France.
FondaMental, Fondation de Recherche et de Soins en Santé MentaleCréteil, France.
Front Mol Neurosci. 2017 Aug 8;10:248. doi: 10.3389/fnmol.2017.00248. eCollection 2017.
Major depressive disorder (MDD) is a highly prevalent mental illness whose therapy management remains uncertain, with more than 20% of patients who do not achieve response to antidepressants. Therefore, identification of reliable biomarkers to predict response to treatment will greatly improve MDD patient medical care. Due to the inaccessibility and lack of brain tissues from living MDD patients to study depression, researches using animal models have been useful in improving sensitivity and specificity of identifying biomarkers. In the current study, we used the unpredictable chronic mild stress (UCMS) model and correlated stress-induced depressive-like behavior ( = 8 unstressed vs. 8 stressed mice) as well as the fluoxetine-induced recovery ( = 8 stressed and fluoxetine-treated mice vs. 8 unstressed and fluoxetine-treated mice) with transcriptional signatures obtained by genome-wide microarray profiling from whole blood, dentate gyrus (DG), and the anterior cingulate cortex (ACC). Hierarchical clustering and rank-rank hypergeometric overlap (RRHO) procedures allowed us to identify gene transcripts with variations that correlate with behavioral profiles. As a translational validation, some of those transcripts were assayed by RT-qPCR with blood samples from 10 severe major depressive episode (MDE) patients and 10 healthy controls over the course of 30 weeks and four visits. Repeated-measures ANOVAs revealed candidate trait biomarkers (, , , and ), whereas univariate linear regression analyses uncovered candidates state biomarkers (, and ), as well as prediction biomarkers predictive of antidepressant response (, ). These data suggest that such a translational approach may offer new leads for clinically valid panels of biomarkers for MDD.
重度抑郁症(MDD)是一种高度流行的精神疾病,其治疗管理仍不明确,超过20%的患者对抗抑郁药无反应。因此,识别可靠的生物标志物以预测治疗反应将极大地改善MDD患者的医疗护理。由于无法获取活着的MDD患者的脑组织用于研究抑郁症,使用动物模型的研究有助于提高识别生物标志物的敏感性和特异性。在本研究中,我们使用了不可预测的慢性轻度应激(UCMS)模型,将应激诱导的抑郁样行为(8只未应激小鼠与8只应激小鼠)以及氟西汀诱导的恢复(8只应激并接受氟西汀治疗的小鼠与8只未应激并接受氟西汀治疗的小鼠)与通过全基因组微阵列分析从全血、齿状回(DG)和前扣带回皮质(ACC)获得的转录特征相关联。层次聚类和秩-秩超几何重叠(RRHO)程序使我们能够识别与行为特征相关的基因转录本变化。作为转化验证,其中一些转录本通过RT-qPCR在30周内和四次就诊期间对10名重度重度抑郁发作(MDE)患者和10名健康对照的血样进行了检测。重复测量方差分析揭示了候选特质生物标志物(、、、和),而单变量线性回归分析发现了候选状态生物标志物(、和),以及预测抗抑郁反应的预测生物标志物(、)。这些数据表明,这种转化方法可能为MDD的临床有效生物标志物组提供新的线索。