文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定重度抑郁症中的线粒体自噬相关生物标志物和免疫浸润。

Identification of mitophagy-related biomarkers and immune infiltration in major depressive disorder.

机构信息

The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.

Department of Hematology and Oncology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China.

出版信息

BMC Genomics. 2023 Apr 25;24(1):216. doi: 10.1186/s12864-023-09304-6.


DOI:10.1186/s12864-023-09304-6
PMID:37098514
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10131417/
Abstract

BACKGROUND: Major depressive disorder (MDD) is a life-threatening and debilitating mental health condition. Mitophagy, a form of selective autophagy that eliminates dysfunctional mitochondria, is associated with depression. However, studies on the relationship between mitophagy-related genes (MRGs) and MDD are scarce. This study aimed to identify potential mitophagy-related biomarkers for MDD and characterize the underlying molecular mechanisms. METHODS: The gene expression profiles of 144 MDD samples and 72 normal controls were retrieved from the Gene Expression Omnibus database, and the MRGs were extracted from the GeneCards database. Consensus clustering was used to determine MDD clusters. Immune cell infiltration was evaluated using CIBERSORT. Functional enrichment analyses were performed to determine the biological significance of mitophagy-related differentially expressed genes (MR-DEGs). Weighted gene co-expression network analysis, along with a network of protein-protein interactions (PPI), was used to identify key modules and hub genes. Based on the least absolute shrinkage and selection operator analysis and univariate Cox regression analysis, a diagnostic model was constructed and evaluated using receiver operating characteristic curves and validated with training data and external validation data. We reclassified MDD into two molecular subtypes according to biomarkers and evaluated their expression levels. RESULTS: In total, 315 MDD-related MR-DEGs were identified. Functional enrichment analyses revealed that MR-DEGs were mainly enriched in mitophagy-related biological processes and multiple neurodegenerative disease pathways. Two distinct clusters with diverse immune infiltration characteristics were identified in the 144 MDD samples. MATR3, ACTL6A, FUS, BIRC2, and RIPK1 have been identified as potential biomarkers of MDD. All biomarkers showed varying degrees of correlation with immune cells. In addition, two molecular subtypes with distinct mitophagy gene signatures were identified. CONCLUSIONS: We identified a novel five-MRG gene signature that has excellent diagnostic performance and identified an association between MRGs and the immune microenvironment in MDD.

摘要

背景:重度抑郁症(MDD)是一种危及生命和使人虚弱的心理健康状况。自噬是一种选择性自噬形式,可以消除功能失调的线粒体,与抑郁症有关。然而,关于自噬相关基因(MRGs)与 MDD 之间关系的研究很少。本研究旨在确定 MDD 的潜在自噬相关生物标志物,并描述其潜在的分子机制。

方法:从基因表达综合数据库中检索了 144 例 MDD 样本和 72 例正常对照的基因表达谱,并从基因卡片数据库中提取了 MRGs。采用共识聚类确定 MDD 聚类。使用 CIBERSORT 评估免疫细胞浸润。进行功能富集分析以确定自噬相关差异表达基因(MR-DEGs)的生物学意义。采用加权基因共表达网络分析和蛋白质-蛋白质相互作用网络(PPI),鉴定关键模块和枢纽基因。基于最小绝对收缩和选择算子分析以及单变量 Cox 回归分析,构建并使用接收者操作特征曲线评估诊断模型,并使用训练数据和外部验证数据进行验证。根据生物标志物将 MDD 重新分类为两种分子亚型,并评估它们的表达水平。

结果:共鉴定出 315 个与 MDD 相关的 MR-DEGs。功能富集分析表明,MR-DEGs 主要富集在自噬相关的生物学过程和多种神经退行性疾病途径中。在 144 例 MDD 样本中鉴定出两个具有不同免疫浸润特征的截然不同的聚类。MATR3、ACTL6A、FUS、BIRC2 和 RIPK1 已被确定为 MDD 的潜在生物标志物。所有生物标志物与免疫细胞均显示出不同程度的相关性。此外,还鉴定出两种具有不同自噬基因特征的分子亚型。

结论:我们发现了一个新的五-MRG 基因特征,具有出色的诊断性能,并确定了 MRGs 与 MDD 免疫微环境之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/fe2d5b80fbaa/12864_2023_9304_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/b0a35681224e/12864_2023_9304_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/517991d991e4/12864_2023_9304_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/02173ac34138/12864_2023_9304_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/afaf7a95f0d6/12864_2023_9304_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/764de48c7a3f/12864_2023_9304_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/7b8e6d8ca399/12864_2023_9304_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/b53d15d700b5/12864_2023_9304_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/931224df4433/12864_2023_9304_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/004a22f7a596/12864_2023_9304_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/7235fa6bdc56/12864_2023_9304_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/b0758b375ca1/12864_2023_9304_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/714a162afc36/12864_2023_9304_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/32ab68111a8a/12864_2023_9304_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/fe2d5b80fbaa/12864_2023_9304_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/b0a35681224e/12864_2023_9304_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/517991d991e4/12864_2023_9304_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/02173ac34138/12864_2023_9304_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/afaf7a95f0d6/12864_2023_9304_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/764de48c7a3f/12864_2023_9304_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/7b8e6d8ca399/12864_2023_9304_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/b53d15d700b5/12864_2023_9304_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/931224df4433/12864_2023_9304_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/004a22f7a596/12864_2023_9304_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/7235fa6bdc56/12864_2023_9304_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/b0758b375ca1/12864_2023_9304_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/714a162afc36/12864_2023_9304_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/32ab68111a8a/12864_2023_9304_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/10131417/fe2d5b80fbaa/12864_2023_9304_Fig14_HTML.jpg

相似文献

[1]
Identification of mitophagy-related biomarkers and immune infiltration in major depressive disorder.

BMC Genomics. 2023-4-25

[2]
Identification of mitophagy-related genes and analysis of immune infiltration in the astrocytes based on machine learning in the pathogenesis of major depressive disorder.

J Affect Disord. 2025-1-1

[3]
Identification of 7 mitochondria-related genes as diagnostic biomarkers of MDD and their correlation with immune infiltration: New insights from bioinformatics analysis.

J Affect Disord. 2024-3-15

[4]
Comprehensive analysis of endoplasmic reticulum stress and immune infiltration in major depressive disorder.

Front Psychiatry. 2022-10-24

[5]
Identification and Experimental Validation of Parkinson's Disease with Major Depressive Disorder Common Genes.

Mol Neurobiol. 2023-10

[6]
Identification of novel mitophagy-related biomarkers for Kawasaki disease by integrated bioinformatics and machine-learning algorithms.

Transl Pediatr. 2024-8-31

[7]
Ferroptosis-related genes as diagnostic markers for major depressive disorder and their correlations with immune infiltration.

Front Med (Lausanne). 2023-10-24

[8]
Mitophagy and immune infiltration in vitiligo: evidence from bioinformatics analysis.

Front Immunol. 2023

[9]
Signatures of 4 autophagy-related genes as diagnostic markers of MDD and their correlation with immune infiltration.

J Affect Disord. 2021-12-1

[10]
Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis.

Ren Fail. 2022-12

引用本文的文献

[1]
Identification of novel causally related genes in adenomyosis: An integrated summary data-based Mendelian randomization study and bioinformatics analysis.

Medicine (Baltimore). 2025-6-13

[2]
The role and therapeutic potential of mitophagy in major depressive disorder.

Front Pharmacol. 2025-3-26

[3]
The role of Matrin-3 in physiology and its dysregulation in disease.

Biochem Soc Trans. 2024-6-26

本文引用的文献

[1]
Necroptotic kinases are involved in the reduction of depression-induced astrocytes and fluoxetine's inhibitory effects on necroptotic kinases.

Front Pharmacol. 2023-1-4

[2]
Immune cell composition in unipolar depression: a comprehensive systematic review and meta-analysis.

Mol Psychiatry. 2023-1

[3]
KEGG for taxonomy-based analysis of pathways and genomes.

Nucleic Acids Res. 2023-1-6

[4]
DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy.

Brain. 2022-12-19

[5]
Peripheral Blood Circular RNAs as a Biomarker for Major Depressive Disorder and Prediction of Possible Pathways.

Front Neurosci. 2022-3-31

[6]
The Immune Profile of Major Dysmood Disorder: Proof of Concept and Mechanism Using the Precision Nomothetic Psychiatry Approach.

Cells. 2022-3-31

[7]
Changes in leukocytes and CRP in different stages of major depression.

J Neuroinflammation. 2022-4-4

[8]
A novel 4 immune-related genes as diagnostic markers and correlated with immune infiltrates in major depressive disorder.

BMC Immunol. 2022-2-13

[9]
Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis.

Nat Med. 2022-1

[10]
Immune targets for therapeutic development in depression: towards precision medicine.

Nat Rev Drug Discov. 2022-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索