Suppr超能文献

再探复杂性水平分析:三十年的后见之明能告诉我们大脑如何表征视觉信息?

Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?

作者信息

Tsotsos John K

机构信息

Department of Electrical Engineering and Computer Science, York UniversityToronto, ON, Canada.

出版信息

Front Psychol. 2017 Aug 9;8:1216. doi: 10.3389/fpsyg.2017.01216. eCollection 2017.

Abstract

Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide.

摘要

关于生物大脑如何表征和处理视觉信息,以及这如何启发和为机器视觉系统提供信息,已经有很多著述。事实上,已经取得了巨大进展,尤其是在过去十年里在后者领域。然而,一个关键问题似乎常常(如果不是大多时候)被忽视。这个问题很简单:所提出的解决方案是否能与大脑资源的实际情况相匹配?这个匹配问题同样适用于大脑和机器解决方案。一些论文使用理论和实证方法研究了视觉信息处理的内在计算难度。这项活动的主要目标有三个方面:理解视觉信息处理计算问题的深层本质;发现视觉的计算难度与生物视觉系统的固定资源匹配程度如何;以及,从这种匹配研究中抽象出导致观察到的生物视觉性能特征的关键原则。这一组方面在佐措斯(1987年)中被称为,并被提议作为对马尔的三个分析层次的重要补充。本文借助数十年后见之明的优势重新审视这项工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8648/5552749/8d5b8d700de0/fpsyg-08-01216-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验