Suppr超能文献

一种用于估计多基因风险评分的加权单核苷酸多态性相关网络方法。

A Weighted SNP Correlation Network Method for Estimating Polygenic Risk Scores.

作者信息

Levine Morgan E, Langfelder Peter, Horvath Steve

机构信息

Department of Human Genetics, University of California, Box 708822, 695 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.

Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA.

出版信息

Methods Mol Biol. 2017;1613:277-290. doi: 10.1007/978-1-4939-7027-8_10.

Abstract

Polygenic scores are useful for examining the joint associations of genetic markers. However, because traditional methods involve summing weighted allele counts, they may fail to capture the complex nature of biology. Here we describe a network-based method, which we call weighted SNP correlation network analysis (WSCNA), and demonstrate how it could be used to generate meaningful polygenic scores. Using data on human height in a US population of non-Hispanic whites, we illustrate how this method can be used to identify SNP networks from GWAS data, create network-specific polygenic scores, examine network topology to identify hub SNPs, and gain biological insights into complex traits. In our example, we show that this method explains a larger proportion of the variance in human height than traditional polygenic score methods. We also identify hub genes and pathways that have previously been identified as influencing human height. In moving forward, this method may be useful for generating genetic susceptibility measures for other health related traits, examining genetic pleiotropy, identifying at-risk individuals, examining gene score by environmental effects, and gaining a deeper understanding of the underlying biology of complex traits.

摘要

多基因评分对于检验遗传标记的联合关联很有用。然而,由于传统方法涉及对加权等位基因计数进行求和,它们可能无法捕捉生物学的复杂本质。在此,我们描述一种基于网络的方法,我们称之为加权单核苷酸多态性关联网络分析(WSCNA),并展示如何使用它来生成有意义的多基因评分。利用美国非西班牙裔白人人群中人类身高的数据,我们说明了该方法如何用于从全基因组关联研究(GWAS)数据中识别单核苷酸多态性(SNP)网络、创建特定于网络的多基因评分、检查网络拓扑结构以识别枢纽SNP,并获得对复杂性状的生物学见解。在我们的示例中,我们表明该方法比传统的多基因评分方法能解释人类身高变异中更大的比例。我们还识别出先前已被确定影响人类身高的枢纽基因和通路。展望未来,该方法可能有助于为其他与健康相关的性状生成遗传易感性测量指标、检验基因多效性、识别高危个体、按环境效应检验基因评分,以及更深入地理解复杂性状的潜在生物学机制。

相似文献

5
Genetic Architecture Associated With Familial Short Stature.与家族性身材矮小相关的遗传结构。
J Clin Endocrinol Metab. 2020 Jun 1;105(6). doi: 10.1210/clinem/dgaa131.
8
Reconstructing the History of Polygenic Scores Using Coalescent Trees.使用合并树重建多基因评分的历史。
Genetics. 2019 Jan;211(1):235-262. doi: 10.1534/genetics.118.301687. Epub 2018 Nov 2.

本文引用的文献

4
5
Power and predictive accuracy of polygenic risk scores.多基因风险评分的效力和预测准确性。
PLoS Genet. 2013 Mar;9(3):e1003348. doi: 10.1371/journal.pgen.1003348. Epub 2013 Mar 21.
6
An evolutionary perspective on epistasis and the missing heritability.从进化角度看上位性和遗传缺失。
PLoS Genet. 2013 Feb;9(2):e1003295. doi: 10.1371/journal.pgen.1003295. Epub 2013 Feb 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验