Suppr超能文献

并行大规模分子动力学模拟为澄清多孔结构对 Ni/YSZ 多颗粒烧结过程的影响开辟了新视角。

Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

机构信息

Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University , 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.

出版信息

ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31816-31824. doi: 10.1021/acsami.7b07737. Epub 2017 Sep 11.

Abstract

Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

摘要

在固体氧化物燃料电池的 Ni/YSZ 多孔阳极中,镍的烧结会改变多孔结构,导致其退化。在运行过程中防止烧结和退化是一个巨大的挑战。通常,使用由两个粒子在一个衬底上组成的烧结分子动力学(MD)模拟模型;然而,该模型无法反映多孔结构对烧结的影响。在我们之前的研究中,使用包含数万原子的多纳米粒子烧结建模方法揭示了粒子骨架和孔隙率对烧结的影响。然而,该方法无法揭示粒子尺寸对烧结的影响以及烧结对多孔结构变化的影响。在本研究中,我们报告了一种通过使用我们的多纳米粒子建模方法和并行的大规模数百万原子 MD 模拟器来揭示多孔结构中这些影响的策略。我们使用该方法研究了 YSZ 粒子尺寸和曲折度对 Ni/YSZ 阳极中烧结和降解的影响。我们的并行大规模 MD 模拟表明,随着 YSZ 粒子尺寸的减小,烧结程度降低。在烧结过程中,由于孔的合并,气体燃料扩散路径(反映过电势)被阻塞。随着 YSZ 粒子尺寸的增加,气体扩散性能的降解增加。此外,通过曲折度参数量化了气体扩散性能,并发现烧结后良好扩散的最佳 YSZ 粒子尺寸与 Ni 相等。这些发现无法通过之前使用数万原子的 MD 烧结研究获得。本研究的并行大规模数百万原子 MD 模拟使得能够阐明粒子尺寸和曲折度对烧结和降解的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验