Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
Nanoscale. 2023 Jul 13;15(27):11569-11581. doi: 10.1039/d3nr01604h.
Increasing the performance and improving the stability of solid oxide cells are critical requirements for advancing this technology toward commercial applications. In this study, a systematic comparison of anode-supported cells utilizing thin films with those utilizing conventional screen-printed yttria-stabilized zirconia (YSZ) is performed. High-resolution secondary ion mass spectrometry (SIMS) imaging is used to visualize, for the first time, the extent of Ni diffusion into screen-printed microcrystalline YSZ electrolytes of approximately 2-3 μm thickness, due to the high temperature (typically >1300 °C) used in the conventional sintering process. As an alternative approach, dense YSZ thin films and Ni(O)-YSZ nanocomposite layers are prepared using pulsed laser deposition (PLD) at a relatively low temperature of 750 °C. YSZ thin films exhibit densely packed nanocrystalline grains and a remarkable suppression of Ni diffusion, which are further associated with some reduction in the ohmic resistance of the cell, especially in the low temperature regime. Moreover, the use of a Ni-YSZ nanocomposite layer resulted in improved contact at the YSZ/anode interface as well as a higher density of triple phase boundaries due to the nanoscale Ni and YSZ grains being homogeneously distributed throughout the structure. The cells utilizing the YSZ/Ni-YSZ bilayer thin films show excellent performance in fuel cell operation and good durability in short-term operation up to 65 hours. These results provide insights into ways to improve the electrochemical performance of SOCs by utilizing innovative thin film structures in conjunction with commercially viable porous anode-supported cells.
提高固体氧化物燃料电池的性能和稳定性是将该技术推向商业应用的关键要求。在本研究中,对使用薄膜的阳极支撑电池与使用传统丝网印刷氧化钇稳定氧化锆(YSZ)的电池进行了系统比较。高分辨率二次离子质谱(SIMS)成像首次用于可视化由于传统烧结过程中使用的高温(通常>1300°C),Ni 扩散到厚度约为 2-3μm 的丝网印刷微晶硅 YSZ 电解质中的程度。作为替代方法,使用脉冲激光沉积(PLD)在相对较低的 750°C 温度下制备致密的 YSZ 薄膜和 Ni(O)-YSZ 纳米复合材料层。YSZ 薄膜表现出密集堆积的纳米晶颗粒和对 Ni 扩散的显著抑制,这进一步与电池的欧姆电阻降低有关,特别是在低温区。此外,由于纳米级 Ni 和 YSZ 晶粒均匀分布在整个结构中,使用 Ni-YSZ 纳米复合材料层可改善 YSZ/阳极界面的接触,并增加三相边界的密度。使用 YSZ/Ni-YSZ 双层薄膜的电池在燃料电池运行中表现出优异的性能,并在长达 65 小时的短期运行中具有良好的耐久性。这些结果为通过结合创新的薄膜结构和商业上可行的多孔阳极支撑电池来提高 SOC 的电化学性能提供了思路。