Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland.
Acc Chem Res. 2017 Sep 19;50(9):2104-2115. doi: 10.1021/acs.accounts.7b00277. Epub 2017 Aug 29.
The coupling of an α-ketoacid and a hydroxylamine (KAHA ligation) affords amide bonds under aqueous, acidic conditions without the need for protecting groups or coupling agents. Translating this finding into a general approach to chemical protein synthesis required the identification of methods to incorporate the key functional groups into unprotected peptide segments-ideally using well-established Fmoc solid-phase peptide synthesis protocols. A decade of effort has now led to robust, convenient methods for preparing peptides bearing free or masked C-terminal α-ketoacids and N-terminal hydroxylamines. The facile synthesis of the segments and the aqueous, acidic conditions of the KAHA ligation make it ideal for the construction of small proteins (up to 200 residues), including SUMO and related modifier proteins, betatrophin and other protein hormones, nitrophorin 4, S100A4, and the cyclic protein AS-48. Key to the successful development of this protein synthesis platform was the identification and gram-scale synthesis of (S)-5-oxaproline. This hydroxylamine monomer is completely stable toward standard methods and practices of solid-phase peptide synthesis while still performing very well in the KAHA ligation. This reaction partner-in contrast to all others examined-affords esters rather than amides as the primary ligation product. The resulting depsipeptides often offer superior solubility and handling and have been key in the chemical synthesis of hydrophobic and ampiphilic proteins. Upon facile O-to-N acyl shift, peptides bearing a noncanonical homoserine residue at the ligation site are formed. With proper choice of the ligation site, the incorporation of this unnatural amino acid does not appear to affect the structure or biological activity of the protein targets. The development of the chemical methods for preparing and masking peptide α-ketoacids and hydroxyalmines, the preparation of several protein targets by convergent ligation strategies, and the synthesis of new hydroxylamine monomers affording either natural or unnatural residues at the ligation site are discussed. By operation under acidic conditions and with a distinct preference for the ligation site, these efforts establish KAHA ligation as a complementary method to the venerable native chemical ligation (NCL) for chemical protein synthesis. This Account documents both the state of the KAHA ligation and the challenges in identifying, inventing, and optimizing new reactions and building blocks needed to interface KAHA ligation with Fmoc solid-phase peptide chemistry. With these challenges largely addressed, peptide segments ready for ligation are formed directly upon resin cleavage, facilitating rapid assembly of four to five segments into proteins. This work sets the stage for applications of the KAHA ligation to chemical biology and protein therapeutics.
α-酮酸和羟胺(KAHA 连接)的偶联在水相、酸性条件下提供酰胺键,无需保护基团或偶联剂。将这一发现转化为化学蛋白质合成的一般方法需要确定将关键官能团引入未保护的肽段的方法——理想情况下是使用成熟的 Fmoc 固相肽合成方案。十年来的努力现在已经为制备带有游离或掩蔽的 C 末端α-酮酸和 N 末端羟胺的肽提供了可靠、方便的方法。KAHA 连接的片段的简便合成以及水相、酸性条件使其成为构建小蛋白(多达 200 个残基)的理想选择,包括 SUMO 和相关修饰蛋白、betatrophin 和其他蛋白激素、硝普蛋白 4、S100A4 和环状蛋白 AS-48。该蛋白质合成平台成功开发的关键是鉴定和克级合成(S)-5-氧代脯氨酸。这种羟胺单体对固相肽合成的标准方法和实践完全稳定,而在 KAHA 连接中仍能很好地发挥作用。与所有其他经过检验的反应伙伴不同,该反应伙伴提供酯而不是酰胺作为主要连接产物。所得的去肽通常提供更好的溶解性和处理性,并在疏水性和两亲性蛋白的化学合成中发挥了关键作用。通过简便的 O 到 N 酰基转移,在连接位点形成带有非典型同型丝氨酸残基的肽。通过适当选择连接位点,该非天然氨基酸的掺入似乎不会影响蛋白质靶标的结构或生物活性。讨论了用于制备和掩蔽肽α-酮酸和羟胺的化学方法的发展、通过收敛连接策略制备的几个蛋白质靶标以及合成在连接位点提供天然或非天然残基的新羟胺单体。通过在酸性条件下操作,并对连接位点有明显的偏好,这些努力使 KAHA 连接成为化学蛋白质合成中古老的天然化学连接(NCL)的互补方法。该账户记录了 KAHA 连接的状态以及在确定、发明和优化与 Fmoc 固相肽化学接口所需的新反应和构建块方面的挑战。随着这些挑战的大部分得到解决,直接在树脂裂解时形成用于连接的肽段,促进了四个到五个肽段快速组装成蛋白质。这项工作为 KAHA 连接在化学生物学和蛋白质治疗学中的应用奠定了基础。