Suppr超能文献

急诊呼叫中心每日案例量:预测模型的构建和验证。

Daily volume of cases in emergency call centers: construction and validation of a predictive model.

机构信息

University Grenoble Alps, Emergency Department and Mobile Intensive Care Unit, CHU Grenoble Alps, Grenoble, France.

University Grenoble Alps, INSERM U823, Institut Albert BONNIOT, Grenoble, France.

出版信息

Scand J Trauma Resusc Emerg Med. 2017 Aug 29;25(1):86. doi: 10.1186/s13049-017-0430-9.

Abstract

BACKGROUND

Variations in the activity of emergency dispatch centers are an obstacle to the rationalization of resource allocation. Many explanatory factors are well known, available in advance and could predict the volume of emergency cases. Our objective was to develop and evaluate the performance of a predictive model of daily call center activity.

METHODS

A retrospective survey was conducted on all cases from 2005 to 2011 in a large medical emergency call center (1,296,153 cases). A generalized additive model of daily cases was calibrated on data from 2005 to 2008 (1461 days, development sample) and applied to the prediction of days from 2009 to 2011 (1095 days, validation sample). Seventeen calendar and epidemiological variables and a periodic function for seasonality were included in the model.

RESULTS

The average number of cases per day was 507 (95% confidence interval: 500 to 514) (range, 286 to 1251). Factors significantly associated with increased case volume were the annual increase, weekend days, public holidays, regional incidence of influenza in the previous week and regional incidence of gastroenteritis in the previous week. The adjusted R for the model was 0.89 in the calibration sample. The model predicted the actual number of cases within ± 100 for 90.5% of the days, with an average error of -13 cases (95% CI: -17 to 8).

CONCLUSIONS

A large proportion of the variability of the medical emergency call center's case volume can be predicted using readily available covariates.

摘要

背景

急救调度中心的活动变化是资源配置合理化的障碍。许多解释因素是众所周知的,可提前获得,并可预测紧急情况的数量。我们的目的是开发和评估一种预测每日呼叫中心活动的模型的性能。

方法

对大型医疗急救呼叫中心(1296153 例)2005 年至 2011 年所有病例进行回顾性调查。2005 年至 2008 年(1461 天,开发样本)的数据对每日病例的广义加性模型进行了校准,并应用于 2009 年至 2011 年(1095 天,验证样本)的预测。该模型包含 17 个日历和流行病学变量以及季节性的周期性函数。

结果

平均每日病例数为 507 例(95%置信区间:500 至 514)(范围:286 至 1251)。与病例量增加显著相关的因素是年增长率、周末、公共假日、前一周的区域流感发病率和前一周的区域肠胃炎发病率。模型在校准样本中的调整 R 为 0.89。该模型预测的实际病例数在±100 范围内,有 90.5%的天数预测准确,平均误差为-13 例(95%CI:-17 至 8)。

结论

使用现成的协变量可以预测很大一部分医疗急救呼叫中心病例量的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/540c/5576313/36109c959c5b/13049_2017_430_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验