Suppr超能文献

通过分析病毒序列簇得出的有偏差的系统发育动力学推断。

Biased phylodynamic inferences from analysing clusters of viral sequences.

作者信息

Dearlove Bethany L, Xiang Fei, Frost Simon D W

机构信息

Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.

出版信息

Virus Evol. 2017 Aug 3;3(2):vex020. doi: 10.1093/ve/vex020. eCollection 2017 Jul.

Abstract

Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a 'power law' behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified 'transmission cluster' of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources.

摘要

系统发育方法正越来越多地用于帮助理解可测量进化的病毒(包括艾滋病毒)的传播动态。经常观察到高度相似序列的簇,这些簇似乎遵循“幂律”行为,有少量非常大的簇。这些簇可能有助于识别流行病中的亚群体,并为应实施干预策略的地点提供信息。然而,样本的聚类并不一定意味着存在高传播率的亚群体,因为密切相关的病毒组也可能由于非流行病学效应(如过度采样)而出现。重要的是要确保观察到的系统发育聚类反映了传播群体中的真正异质性,而不是由非流行病学效应驱动的。我们在几种人口统计学情景下,对使用错误识别的序列“传播簇”来估计系统发育动力学参数(包括有效种群大小和指数增长率)的影响进行了评估。我们的模拟研究表明,在随机混合、恒定种群大小的合并过程下模拟的树中,采用最大大小的簇来重新估计参数会系统性地低估总体有效种群大小。此外,传播簇在99%的情况下错误地类似于指数增长或逻辑斯谛增长模型。我们还说明了在指数增长的合并树和生死树中错误簇的后果,同样,增长率会向上偏斜。这对于在大型病毒数据库中识别簇具有明显的意义,其中一个错误的簇可能导致干预资源的浪费。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0df/5570026/dfd4cfba17bf/vex020f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验