Suppr超能文献

针对合并症情况调整医疗支出:美国国家住院患者数据的应用

Adjusting health spending for the presence of comorbidities: an application to United States national inpatient data.

作者信息

Dieleman Joseph L, Baral Ranju, Johnson Elizabeth, Bulchis Anne, Birger Maxwell, Bui Anthony L, Campbell Madeline, Chapin Abigail, Gabert Rose, Hamavid Hannah, Horst Cody, Joseph Jonathan, Lomsadze Liya, Squires Ellen, Tobias Martin

机构信息

Institute for Health Metrics and Evaluation, 2301 5th Avenue, Suite 600, Seattle, WA, 98121, USA.

Global Health Group, University of California at San Francisco, 550 16th Street, San Francisco, CA, 94158, USA.

出版信息

Health Econ Rev. 2017 Aug 29;7(1):30. doi: 10.1186/s13561-017-0166-2.

Abstract

BACKGROUND

One of the major challenges in estimating health care spending spent on each cause of illness is allocating spending for a health care event to a single cause of illness in the presence of comorbidities. Comorbidities, the secondary diagnoses, are common across many causes of illness and often correlate with worse health outcomes and more expensive health care. In this study, we propose a method for measuring the average spending for each cause of illness with and without comorbidities.

METHODS

Our strategy for measuring cause of illness-specific spending and adjusting for the presence of comorbidities uses a regression-based framework to estimate excess spending due to comorbidities. We consider multiple causes simultaneously, allowing causes of illness to appear as either a primary diagnosis or a comorbidity. Our adjustment method distributes excess spending away from primary diagnoses (outflows), exaggerated due to the presence of comorbidities, and allocates that spending towards causes of illness that appear as comorbidities (inflows). We apply this framework for spending adjustment to the National Inpatient Survey data in the United States for years 1996-2012 to generate comorbidity-adjusted health care spending estimates for 154 causes of illness by age and sex.

RESULTS

The primary diagnoses with the greatest number of comorbidities in the NIS dataset were acute renal failure, septicemia, and endocarditis. Hypertension, diabetes, and ischemic heart disease were the most common comorbidities across all age groups. After adjusting for comorbidities, chronic kidney diseases, atrial fibrillation and flutter, and chronic obstructive pulmonary disease increased by 74.1%, 40.9%, and 21.0%, respectively, while pancreatitis, lower respiratory infections, and septicemia decreased by 21.3%, 17.2%, and 16.0%. For many diseases, comorbidity adjustments had varying effects on spending for different age groups.

CONCLUSIONS

Our methodology takes a unified approach to account for excess spending caused by the presence of comorbidities. Adjusting for comorbidities provides a substantially altered, more accurate estimate of the spending attributed to specific cause of illness. Making these adjustments supports improved resource tracking, accountability, and planning for future resource allocation.

摘要

背景

在估算每种疾病病因的医疗保健支出时,主要挑战之一是在存在合并症的情况下,将医疗保健事件的支出分配到单一疾病病因上。合并症作为次要诊断,在多种疾病病因中很常见,并且通常与更差的健康结果和更昂贵的医疗保健相关。在本研究中,我们提出了一种方法,用于测量有合并症和无合并症时每种疾病病因的平均支出。

方法

我们测量特定疾病病因支出并针对合并症的存在进行调整的策略,使用基于回归的框架来估计合并症导致的额外支出。我们同时考虑多种病因,允许疾病病因既可以作为主要诊断出现,也可以作为合并症出现。我们的调整方法将因合并症存在而被夸大的主要诊断(流出)的额外支出进行重新分配,并将该支出分配到作为合并症出现的疾病病因上(流入)。我们将这种支出调整框架应用于美国1996 - 2012年的全国住院患者调查数据,以按年龄和性别生成154种疾病病因的合并症调整后的医疗保健支出估计值。

结果

全国住院患者调查数据集(NIS)中合并症数量最多的主要诊断是急性肾衰竭、败血症和心内膜炎。高血压、糖尿病和缺血性心脏病是所有年龄组中最常见的合并症。在调整合并症后,慢性肾病、心房颤动和扑动以及慢性阻塞性肺疾病分别增加了74.1%、40.9%和21.0%,而胰腺炎、下呼吸道感染和败血症分别下降了21.3%、17.2%和16.0%。对于许多疾病,合并症调整对不同年龄组的支出有不同影响。

结论

我们的方法采用统一的方法来考虑合并症存在导致的额外支出。针对合并症进行调整可大幅改变并更准确地估计归因于特定疾病病因的支出。进行这些调整有助于改善资源追踪、问责制以及未来资源分配的规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cde/5574833/eaaa1f4fdb0c/13561_2017_166_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验