Suppr超能文献

光学相干断层扫描中的像素分类方法用于肿瘤分割及其与 OCT 微血管成像的互补应用。

Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography.

机构信息

Nano-optics and Highly Sensitive Optical Measurement Department, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia.

Laboratory of Optical Coherent Tomography, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia.

出版信息

J Biophotonics. 2018 Apr;11(4):e201700072. doi: 10.1002/jbio.201700072. Epub 2017 Dec 18.

Abstract

A novel machine-learning method to distinguish between tumor and normal tissue in optical coherence tomography (OCT) has been developed. Pre-clinical murine ear model implanted with mouse colon carcinoma CT-26 was used. Structural-image-based feature sets were defined for each pixel and machine learning classifiers were trained using "ground truth" OCT images manually segmented by comparison with histology. The accuracy of the OCT tumor segmentation method was then quantified by comparing with fluorescence imaging of tumors expressing genetically encoded fluorescent protein KillerRed that clearly delineates tumor borders. Because the resultant 3D tumor/normal structural maps are inherently co-registered with OCT derived maps of tissue microvasculature, the latter can be color coded as belonging to either tumor or normal tissue. Applications to radiomics-based multimodal OCT analysis are envisioned.

摘要

一种新的机器学习方法可用于区分光学相干断层扫描(OCT)中的肿瘤组织和正常组织。研究人员使用了预先建立的在鼠耳模型中植入了小鼠结肠癌细胞 CT-26 的临床前模型。为每个像素定义了基于结构图像的特征集,并使用与组织学比较手动分割的“金标准”OCT 图像对机器学习分类器进行了训练。然后,通过与表达遗传编码荧光蛋白 KillerRed 的肿瘤的荧光成像进行比较,定量评估 OCT 肿瘤分割方法的准确性,该蛋白可清晰地描绘肿瘤边界。由于生成的 3D 肿瘤/正常结构图谱与 OCT 衍生的组织微血管图谱固有配准,因此后者可以用颜色标记为肿瘤或正常组织。设想将其应用于基于放射组学的多模态 OCT 分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验