Argonne National Laboratory , 9700 S. Cass Avenue, Lemont, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2017 Sep 27;9(38):32727-32736. doi: 10.1021/acsami.7b09149. Epub 2017 Sep 13.
In this study, silicon nanoparticles are oxidized in a controlled manner to obtain different thicknesses of SiO layers. Their stability in aqueous slurries as well as the effect of oxide layer thickness on the electrochemical performance of the silicon anodes is evaluated. Our results show that slightly increasing the oxide layer of silicon nanoparticles significantly improves the stability of the nanoparticles in aqueous slurries and does not compromise the initial electrochemical performance of the electrodes. A careful comparison of the rate and cycle performance between 400 °C treated Si nanoparticles and pristine Si nanoparticles shows that by treating the silicon nanoparticles in air for slightly increasing the oxide layer, improvement in both rate and cycle performance can be achieved.
在这项研究中,硅纳米颗粒被以可控的方式氧化,以获得不同厚度的 SiO 层。评估了它们在水性悬浮液中的稳定性以及氧化层厚度对硅阳极电化学性能的影响。我们的结果表明,略微增加硅纳米颗粒的氧化层厚度可显著提高纳米颗粒在水性悬浮液中的稳定性,并且不会影响电极的初始电化学性能。对 400°C 处理的 Si 纳米颗粒和原始 Si 纳米颗粒之间的倍率和循环性能进行仔细比较表明,通过在空气中略微增加氧化层来处理硅纳米颗粒,可以实现倍率和循环性能的提高。