Suppr超能文献

将λ噬菌体基因驯化成为一种假定的第三种复制解旋酶匹配器。

Domestication of Lambda Phage Genes into a Putative Third Type of Replicative Helicase Matchmaker.

作者信息

Brézellec Pierre, Petit Marie-Agnès, Pasek Sophie, Vallet-Gely Isabelle, Possoz Christophe, Ferat Jean-Luc

机构信息

Universite de Versailles Saint-Quentin en Yvelines UFR des Sciences, France.

Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

出版信息

Genome Biol Evol. 2017 Jun 1;9(6):1561-1566. doi: 10.1093/gbe/evx111.

Abstract

At the onset of the initiation of chromosome replication, bacterial replicative helicases are recruited and loaded on the DnaA-oriC nucleoprotein platform, assisted by proteins like DnaC/DnaI or DciA. Two orders of bacteria appear, however, to lack either of these factors, raising the question of the essentiality of these factors in bacteria. Through a phylogenomic approach, we identified a pair of genes that could have substituted for dciA. The two domesticated genes are specific of the dnaC/dnaI- and dciA-lacking organisms and apparently domesticated from lambdoid phage genes. They derive from λO and λP and were renamed dopC and dopE, respectively. DopE is expected to bring the replicative helicase to the bacterial origin of replication, while DopC might assist DopE in this function. The confirmation of the implication of DopCE in the handling of the replicative helicase at the onset of replication in these organisms would generalize to all bacteria and therefore to all living organisms the need for specific factors dedicated to this function.

摘要

在染色体复制起始时,细菌复制性解旋酶在DnaC/DnaI或DciA等蛋白质的协助下被招募并加载到DnaA - oriC核蛋白平台上。然而,有两类细菌似乎缺乏这些因子中的任何一种,这就引发了这些因子在细菌中是否必不可少的问题。通过系统发育基因组学方法,我们鉴定出一对可能替代dciA的基因。这两个驯化基因是缺乏dnaC/dnaI和dciA的生物体所特有的,显然是从λ样噬菌体基因驯化而来。它们分别源自λO和λP,分别被重新命名为dopC和dopE。预计DopE会将复制性解旋酶带到细菌复制起点,而DopC可能在该功能中协助DopE。这些生物体中DopCE在复制起始时对复制性解旋酶处理过程中的作用得到证实,将使所有细菌乃至所有生物体都普遍需要专门负责此功能的特定因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7005/5509034/0bed62aa0a8c/evx111f1.jpg

相似文献

1
Domestication of Lambda Phage Genes into a Putative Third Type of Replicative Helicase Matchmaker.
Genome Biol Evol. 2017 Jun 1;9(6):1561-1566. doi: 10.1093/gbe/evx111.
4
Replication Initiation in Bacteria.
Enzymes. 2016;39:1-30. doi: 10.1016/bs.enz.2016.03.001. Epub 2016 Apr 20.
5
Diverse Mechanisms of Helicase Loading during DNA Replication Initiation in Bacteria.
J Bacteriol. 2023 Apr 25;205(4):e0048722. doi: 10.1128/jb.00487-22. Epub 2023 Mar 6.
6
The LH-DH module of bacterial replicative helicases is the common binding site for DciA and other helicase loaders.
Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):177-187. doi: 10.1107/S2059798323000281. Epub 2023 Feb 6.
8
Evolution of lambdoid replication modules.
Virus Genes. 2002 Mar;24(2):163-71. doi: 10.1023/a:1014576701341.
10
A two-protein strategy for the functional loading of a cellular replicative DNA helicase.
Mol Cell. 2003 Apr;11(4):1009-20. doi: 10.1016/s1097-2765(03)00130-8.

引用本文的文献

1
DnaB and DciA: mechanisms of helicase loading and translocation on ssDNA.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf521.
2
DciA secures bidirectional replication initiation in Vibrio cholerae.
Nucleic Acids Res. 2024 Nov 11;52(20):12324-12333. doi: 10.1093/nar/gkae795.
3
Frequent nonhomologous replacement of replicative helicase loaders by viruses in .
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2317954121. doi: 10.1073/pnas.2317954121. Epub 2024 Apr 29.
5
Diverse Mechanisms of Helicase Loading during DNA Replication Initiation in Bacteria.
J Bacteriol. 2023 Apr 25;205(4):e0048722. doi: 10.1128/jb.00487-22. Epub 2023 Mar 6.
6
The LH-DH module of bacterial replicative helicases is the common binding site for DciA and other helicase loaders.
Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):177-187. doi: 10.1107/S2059798323000281. Epub 2023 Feb 6.
7
Convergent evolution in two bacterial replicative helicase loaders.
Trends Biochem Sci. 2022 Jul;47(7):620-630. doi: 10.1016/j.tibs.2022.02.005. Epub 2022 Mar 26.
9
The LUCA and its complex virome.
Nat Rev Microbiol. 2020 Nov;18(11):661-670. doi: 10.1038/s41579-020-0408-x. Epub 2020 Jul 14.

本文引用的文献

2
PHASTER: a better, faster version of the PHAST phage search tool.
Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21. doi: 10.1093/nar/gkw387. Epub 2016 May 3.
3
Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins.
Mol Cell. 2016 Jan 21;61(2):287-96. doi: 10.1016/j.molcel.2015.12.005. Epub 2015 Dec 24.
4
IMG 4 version of the integrated microbial genomes comparative analysis system.
Nucleic Acids Res. 2014 Jan;42(Database issue):D560-7. doi: 10.1093/nar/gkt963. Epub 2013 Oct 27.
5
Helicase loading at chromosomal origins of replication.
Cold Spring Harb Perspect Biol. 2013 Jun 1;5(6):a010124. doi: 10.1101/cshperspect.a010124.
6
Identification of replication origins in prokaryotic genomes.
Brief Bioinform. 2008 Sep;9(5):376-91. doi: 10.1093/bib/bbn031. Epub 2008 Jul 26.
7
Prophinder: a computational tool for prophage prediction in prokaryotic genomes.
Bioinformatics. 2008 Mar 15;24(6):863-5. doi: 10.1093/bioinformatics/btn043. Epub 2008 Jan 30.
8
The HHpred interactive server for protein homology detection and structure prediction.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8. doi: 10.1093/nar/gki408.
9
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.
Syst Biol. 2003 Oct;52(5):696-704. doi: 10.1080/10635150390235520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验