Suppr超能文献

颅骨运动学测量误差向有限元组织响应的传播。

Propagation of errors from skull kinematic measurements to finite element tissue responses.

机构信息

Department of Mechanical Engineering, Stanford University, 443 Via Ortega, Shriram Center Room 202, Stanford, CA, 94305, USA.

Department of Bio-Engineering, Stanford University, 443 Via Ortega, Shriram Center Room 202, Stanford, CA, 94305, USA.

出版信息

Biomech Model Mechanobiol. 2018 Feb;17(1):235-247. doi: 10.1007/s10237-017-0957-8. Epub 2017 Aug 30.

Abstract

Real-time quantification of head impacts using wearable sensors is an appealing approach to assess concussion risk. Traditionally, sensors were evaluated for accurately measuring peak resultant skull accelerations and velocities. With growing interest in utilizing model-estimated tissue responses for injury prediction, it is important to evaluate sensor accuracy in estimating tissue response as well. Here, we quantify how sensor kinematic measurement errors can propagate into tissue response errors. Using previous instrumented mouthguard validation datasets, we found that skull kinematic measurement errors in both magnitude and direction lead to errors in tissue response magnitude and distribution. For molar design instrumented mouthguards susceptible to mandible disturbances, 150-400% error in skull kinematic measurements resulted in 100% error in regional peak tissue response. With an improved incisor design mitigating mandible disturbances, errors in skull kinematics were reduced to <50%, and several tissue response errors were reduced to <10%. Applying 30[Formula: see text] rotations to reference kinematic signals to emulate sensor transformation errors yielded below 10% error in regional peak tissue response; however, up to 20% error was observed in peak tissue response for individual finite elements. These findings demonstrate that kinematic resultant errors result in regional peak tissue response errors, while kinematic directionality errors result in tissue response distribution errors. This highlights the need to account for both kinematic magnitude and direction errors and accurately determine transformations between sensors and the skull.

摘要

使用可穿戴传感器实时量化头部冲击是评估脑震荡风险的一种很有吸引力的方法。传统上,传感器的评估重点是准确测量峰值合成颅骨加速度和速度。随着利用模型估计的组织响应进行损伤预测的兴趣日益浓厚,评估传感器在估计组织响应方面的准确性也很重要。在这里,我们量化了传感器运动学测量误差如何传播到组织响应误差中。使用以前的带仪器的防护牙套验证数据集,我们发现颅骨运动学测量误差在幅度和方向上都会导致组织响应幅度和分布的误差。对于容易受到下颌干扰的磨牙设计带仪器的防护牙套,颅骨运动学测量误差在 150-400%会导致局部峰值组织响应的 100%误差。采用改进的切牙设计减轻下颌干扰,将颅骨运动学的误差降低到<50%,并将几个组织响应误差降低到<10%。对参考运动学信号应用 30[Formula: see text]旋转来模拟传感器转换误差,会导致局部峰值组织响应的误差小于 10%;然而,在个别有限元中,峰值组织响应的误差高达 20%。这些发现表明,运动学合成误差会导致局部峰值组织响应误差,而运动学方向性误差会导致组织响应分布误差。这突出表明需要考虑运动学幅度和方向误差,并准确确定传感器和颅骨之间的转换。

相似文献

1
Propagation of errors from skull kinematic measurements to finite element tissue responses.
Biomech Model Mechanobiol. 2018 Feb;17(1):235-247. doi: 10.1007/s10237-017-0957-8. Epub 2017 Aug 30.
2
Effect of the mandible on mouthguard measurements of head kinematics.
J Biomech. 2016 Jun 14;49(9):1845-1853. doi: 10.1016/j.jbiomech.2016.04.017. Epub 2016 Apr 27.
3
Laboratory Validation of Two Wearable Sensor Systems for Measuring Head Impact Severity in Football Players.
Ann Biomed Eng. 2016 Apr;44(4):1257-74. doi: 10.1007/s10439-015-1420-6. Epub 2015 Aug 13.
4
Laboratory Validation of Instrumented Mouthguard for Use in Sport.
Sensors (Basel). 2021 Sep 9;21(18):6028. doi: 10.3390/s21186028.
5
Validation and Comparison of Instrumented Mouthguards for Measuring Head Kinematics and Assessing Brain Deformation in Football Impacts.
Ann Biomed Eng. 2020 Nov;48(11):2580-2598. doi: 10.1007/s10439-020-02629-3. Epub 2020 Sep 28.
6
Instrumented Mouthguard Decoupling Affects Measured Head Kinematic Accuracy.
Ann Biomed Eng. 2024 Oct;52(10):2854-2871. doi: 10.1007/s10439-024-03550-9. Epub 2024 Jul 2.
7
Time Window of Head Impact Kinematics Measurement for Calculation of Brain Strain and Strain Rate in American Football.
Ann Biomed Eng. 2021 Oct;49(10):2791-2804. doi: 10.1007/s10439-021-02821-z. Epub 2021 Jul 6.
8
An instrumented mouthguard for measuring linear and angular head impact kinematics in American football.
Ann Biomed Eng. 2013 Sep;41(9):1939-49. doi: 10.1007/s10439-013-0801-y. Epub 2013 Apr 19.
9
In Vivo Evaluation of Wearable Head Impact Sensors.
Ann Biomed Eng. 2016 Apr;44(4):1234-45. doi: 10.1007/s10439-015-1423-3. Epub 2015 Aug 20.
10
AI-Based Denoising of Head Impact Kinematics Measurements With Convolutional Neural Network for Traumatic Brain Injury Prediction.
IEEE Trans Biomed Eng. 2024 Sep;71(9):2759-2770. doi: 10.1109/TBME.2024.3392537. Epub 2024 Aug 21.

引用本文的文献

4
Time Window of Head Impact Kinematics Measurement for Calculation of Brain Strain and Strain Rate in American Football.
Ann Biomed Eng. 2021 Oct;49(10):2791-2804. doi: 10.1007/s10439-021-02821-z. Epub 2021 Jul 6.
5
Instantaneous Whole-Brain Strain Estimation in Dynamic Head Impact.
J Neurotrauma. 2021 Apr 15;38(8):1023-1035. doi: 10.1089/neu.2020.7281. Epub 2020 Dec 14.
6
Head Impact Sensor Studies In Sports: A Systematic Review Of Exposure Confirmation Methods.
Ann Biomed Eng. 2020 Nov;48(11):2497-2507. doi: 10.1007/s10439-020-02642-6. Epub 2020 Oct 13.
7
Validation and Comparison of Instrumented Mouthguards for Measuring Head Kinematics and Assessing Brain Deformation in Football Impacts.
Ann Biomed Eng. 2020 Nov;48(11):2580-2598. doi: 10.1007/s10439-020-02629-3. Epub 2020 Sep 28.
8
A network-based response feature matrix as a brain injury metric.
Biomech Model Mechanobiol. 2020 Jun;19(3):927-942. doi: 10.1007/s10237-019-01261-y. Epub 2019 Nov 23.
9
Concussion classification via deep learning using whole-brain white matter fiber strains.
PLoS One. 2018 May 24;13(5):e0197992. doi: 10.1371/journal.pone.0197992. eCollection 2018.

本文引用的文献

1
Performance Evaluation of a Pre-computed Brain Response Atlas in Dummy Head Impacts.
Ann Biomed Eng. 2017 Oct;45(10):2437-2450. doi: 10.1007/s10439-017-1888-3. Epub 2017 Jul 14.
2
Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter.
Biomech Model Mechanobiol. 2017 Oct;16(5):1709-1727. doi: 10.1007/s10237-017-0915-5. Epub 2017 May 12.
3
Mechanical characterization of human brain tissue.
Acta Biomater. 2017 Jan 15;48:319-340. doi: 10.1016/j.actbio.2016.10.036. Epub 2016 Oct 27.
4
On the characterization of the heterogeneous mechanical response of human brain tissue.
Biomech Model Mechanobiol. 2017 Jun;16(3):907-920. doi: 10.1007/s10237-016-0860-8. Epub 2016 Dec 8.
5
Bandwidth and sample rate requirements for wearable head impact sensors.
J Biomech. 2016 Sep 6;49(13):2918-2924. doi: 10.1016/j.jbiomech.2016.07.004. Epub 2016 Jul 26.
6
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions.
Ann Biomed Eng. 2016 Dec;44(12):3705-3718. doi: 10.1007/s10439-016-1697-0. Epub 2016 Jul 19.
7
Effect of the mandible on mouthguard measurements of head kinematics.
J Biomech. 2016 Jun 14;49(9):1845-1853. doi: 10.1016/j.jbiomech.2016.04.017. Epub 2016 Apr 27.
8
White Matter Injury Susceptibility via Fiber Strain Evaluation Using Whole-Brain Tractography.
J Neurotrauma. 2016 Oct 15;33(20):1834-1847. doi: 10.1089/neu.2015.4239. Epub 2016 Mar 30.
9
Accounting for sampling variability, injury under-reporting, and sensor error in concussion injury risk curves.
J Biomech. 2015 Sep 18;48(12):3059-65. doi: 10.1016/j.jbiomech.2015.07.026. Epub 2015 Aug 6.
10
In Vivo Evaluation of Wearable Head Impact Sensors.
Ann Biomed Eng. 2016 Apr;44(4):1234-45. doi: 10.1007/s10439-015-1423-3. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验