Suppr超能文献

体育运动中头部撞击传感器研究:暴露确认方法的系统评价

Head Impact Sensor Studies In Sports: A Systematic Review Of Exposure Confirmation Methods.

作者信息

Patton Declan A, Huber Colin M, Jain Divya, Myers Rachel K, McDonald Catherine C, Margulies Susan S, Master Christina L, Arbogast Kristy B

机构信息

Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Ann Biomed Eng. 2020 Nov;48(11):2497-2507. doi: 10.1007/s10439-020-02642-6. Epub 2020 Oct 13.

Abstract

To further the understanding of long-term sequelae as a result of repetitive head impacts in sports, in vivo head impact exposure data are critical to expand on existing evidence from animal model and laboratory studies. Recent technological advances have enabled the development of head impact sensors to estimate the head impact exposure of human subjects in vivo. Previous research has identified the limitations of filtering algorithms to process sensor data. In addition, observer and/or video confirmation of sensor-recorded events is crucial to remove false positives. The purpose of the current study was to conduct a systematic review to determine the proportion of published head impact sensor data studies that used filtering algorithms, observer confirmation and/or video confirmation of sensor-recorded events to remove false positives. Articles were eligible for inclusion if collection of head impact sensor data during live sport was reported in the methods section. Descriptive data, confirmation methods and algorithm use for included articles were coded. The primary objective of each study was reviewed to identify the primary measure of exposure, primary outcome and any additional covariates. A total of 168 articles met the inclusion criteria, the publication of which has increased in recent years. The majority used filtering algorithms (74%). The majority did not use observer and/or video confirmation for all sensor-recorded events (64%), which suggests estimates of head impact exposure from these studies may be imprecise.

摘要

为了进一步了解运动中重复性头部撞击导致的长期后遗症,体内头部撞击暴露数据对于扩展动物模型和实验室研究的现有证据至关重要。最近的技术进步使得头部撞击传感器得以开发,以估计人体受试者体内的头部撞击暴露情况。先前的研究已经确定了过滤算法处理传感器数据的局限性。此外,对传感器记录事件的观察者和/或视频确认对于消除误报至关重要。本研究的目的是进行一项系统综述,以确定已发表的头部撞击传感器数据研究中,使用过滤算法、观察者确认和/或视频确认传感器记录事件以消除误报的比例。如果方法部分报告了在现场运动期间收集头部撞击传感器数据,则这些文章有资格被纳入。对纳入文章的描述性数据、确认方法和算法使用情况进行编码。对每项研究的主要目标进行审查,以确定暴露的主要测量指标、主要结局和任何其他协变量。共有168篇文章符合纳入标准,近年来其发表数量有所增加。大多数研究使用了过滤算法(74%)。大多数研究并未对所有传感器记录事件使用观察者和/或视频确认(64%),这表明这些研究对头部撞击暴露的估计可能不准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验