Suppr超能文献

1型糖尿病纵向自身抗体模式与病情进展的联合建模:TEDDY研究结果

Joint modeling of longitudinal autoantibody patterns and progression to type 1 diabetes: results from the TEDDY study.

作者信息

Köhler Meike, Beyerlein Andreas, Vehik Kendra, Greven Sonja, Umlauf Nikolaus, Lernmark Åke, Hagopian William A, Rewers Marian, She Jin-Xiong, Toppari Jorma, Akolkar Beena, Krischer Jeffrey P, Bonifacio Ezio, Ziegler Anette-G

机构信息

Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany.

出版信息

Acta Diabetol. 2017 Nov;54(11):1009-1017. doi: 10.1007/s00592-017-1033-7. Epub 2017 Aug 30.

Abstract

AIMS

The onset of clinical type 1 diabetes (T1D) is preceded by the occurrence of disease-specific autoantibodies. The level of autoantibody titers is known to be associated with progression time from the first emergence of autoantibodies to the onset of clinical symptoms, but detailed analyses of this complex relationship are lacking. We aimed to fill this gap by applying advanced statistical models.

METHODS

We investigated data of 613 children from the prospective TEDDY study who were persistent positive for IAA, GADA and/or IA2A autoantibodies. We used a novel approach of Bayesian joint modeling of longitudinal and survival data to assess the potentially time- and covariate-dependent association between the longitudinal autoantibody titers and progression time to T1D.

RESULTS

For all autoantibodies we observed a positive association between the titers and the T1D progression risk. This association was estimated as time-constant for IA2A, but decreased over time for IAA and GADA. For example the hazard ratio [95% credibility interval] for IAA (per transformed unit) was 3.38 [2.66, 4.38] at 6 months after seroconversion, and 2.02 [1.55, 2.68] at 36 months after seroconversion.

CONCLUSIONS

These findings indicate that T1D progression risk stratification based on autoantibody titers should focus on time points early after seroconversion. Joint modeling techniques allow for new insights into these associations.

摘要

目的

临床1型糖尿病(T1D)发病前会出现疾病特异性自身抗体。已知自身抗体滴度水平与从自身抗体首次出现到临床症状发作的进展时间相关,但缺乏对这种复杂关系的详细分析。我们旨在通过应用先进的统计模型来填补这一空白。

方法

我们调查了前瞻性TEDDY研究中613名儿童的数据,这些儿童的IAA、GADA和/或IA2A自身抗体持续呈阳性。我们采用了一种纵向和生存数据的贝叶斯联合建模新方法,以评估纵向自身抗体滴度与T1D进展时间之间潜在的时间和协变量依赖性关联。

结果

对于所有自身抗体,我们观察到滴度与T1D进展风险之间呈正相关。这种关联对于IA2A估计为时间常数,但对于IAA和GADA随时间下降。例如,IAA(每转换单位)的风险比[95%可信区间]在血清转化后6个月为3.38[2.66,4.38],在血清转化后36个月为2.02[1.55,2.68]。

结论

这些发现表明,基于自身抗体滴度的T1D进展风险分层应关注血清转化后的早期时间点。联合建模技术为这些关联提供了新的见解。

相似文献

引用本文的文献

1
Time to reframe the disease staging system for type 1 diabetes.重新构建 1 型糖尿病疾病分期系统的时机已到。
Lancet Diabetes Endocrinol. 2024 Dec;12(12):924-933. doi: 10.1016/S2213-8587(24)00239-0.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验