CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13503-13507. doi: 10.1002/anie.201707678. Epub 2017 Sep 19.
All-polymer solar cells (all-PSCs) offer unique morphology stability for the application as flexible devices, but the lack of high-performance polymer acceptors limits their power conversion efficiency (PCE) to a value lower than those of the PSCs based on fullerene derivative or organic small molecule acceptors. We herein demonstrate a strategy to synthesize a high-performance polymer acceptor PZ1 by embedding an acceptor-donor-acceptor building block into the polymer main chain. PZ1 possesses broad absorption with a low band gap of 1.55 eV and high absorption coefficient (1.3×10 cm ). The all-PSCs with the wide-band-gap polymer PBDB-T as donor and PZ1 as acceptor showed a record-high PCE of 9.19 % for the all-PSCs. The success of our polymerization strategy can provide a new way to develop efficient polymer acceptors for all-PSCs.
全聚合物太阳能电池(all-PSCs)为柔性器件的应用提供了独特的形态稳定性,但缺乏高性能聚合物受体限制了其功率转换效率(PCE),使其低于基于富勒烯衍生物或有机小分子受体的 PSCs。本文通过将受体-给体-受体结构单元嵌入聚合物主链来合成高性能聚合物受体 PZ1,证明了一种策略。PZ1 具有较宽的吸收光谱,低带隙为 1.55 eV,高吸收系数(1.3×10 cm )。以宽带隙聚合物 PBDB-T 为给体,PZ1 为受体的全聚合物太阳能电池的功率转换效率达到了 9.19%,创下了全聚合物太阳能电池的新纪录。我们的聚合策略的成功为全聚合物太阳能电池中高效聚合物受体的开发提供了一种新途径。