State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Analysis & Testing Center, Xinyang Normal University, Xinyang, Henan, 464000, China.
Nat Commun. 2023 May 22;14(1):2926. doi: 10.1038/s41467-023-38673-5.
With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-α with a 2, 5-substitution and TDY-β with 3, 4-substitution on the core. It shows that TDY-α processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-β, and a more stable morphology with the polymer donor. As a result, the TDY-α based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.
随着二元聚合物太阳能电池的功率转换效率显著提高,小分子受体的热稳定性成为影响器件工作稳定性的主要关注点。在这里,为了解决这个问题,设计了噻吩二羧酸酯间隔基连接的小分子受体,并通过噻吩核异构工程进一步调节其分子几何形状,得到了具有 2,5-取代的二聚体 TDY-α和具有 3,4-取代的 TDY-β。结果表明,TDY-α 的玻璃化转变温度更高,相对于其单体小分子受体部分和 TDY-β 的同分异构体具有更好的结晶性,并且与聚合物给体具有更稳定的形态。因此,基于 TDY-α 的器件实现了更高的器件效率 18.1%,最重要的是,实现了约 35000 小时的外推寿命,保留了初始效率的 80%。我们的结果表明,通过适当的几何设计,连接的小分子受体可以实现高效率和高工作稳定性。