Suppr超能文献

索 tether 小分子受体的几何设计实现了高稳定高效的聚合物太阳能电池。

Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells.

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

Analysis & Testing Center, Xinyang Normal University, Xinyang, Henan, 464000, China.

出版信息

Nat Commun. 2023 May 22;14(1):2926. doi: 10.1038/s41467-023-38673-5.

Abstract

With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-α with a 2, 5-substitution and TDY-β with 3, 4-substitution on the core. It shows that TDY-α processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-β, and a more stable morphology with the polymer donor. As a result, the TDY-α based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.

摘要

随着二元聚合物太阳能电池的功率转换效率显著提高,小分子受体的热稳定性成为影响器件工作稳定性的主要关注点。在这里,为了解决这个问题,设计了噻吩二羧酸酯间隔基连接的小分子受体,并通过噻吩核异构工程进一步调节其分子几何形状,得到了具有 2,5-取代的二聚体 TDY-α和具有 3,4-取代的 TDY-β。结果表明,TDY-α 的玻璃化转变温度更高,相对于其单体小分子受体部分和 TDY-β 的同分异构体具有更好的结晶性,并且与聚合物给体具有更稳定的形态。因此,基于 TDY-α 的器件实现了更高的器件效率 18.1%,最重要的是,实现了约 35000 小时的外推寿命,保留了初始效率的 80%。我们的结果表明,通过适当的几何设计,连接的小分子受体可以实现高效率和高工作稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/357a/10203300/73732c666f32/41467_2023_38673_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验